视频 | 生信分析Linux教程 - Linux下文件操作和快捷键 02

点击阅读原文跳转完整教案。

1 Linux初探,打开新世界的大门

1.1 Linux系统简介和目录理解

1.1.1 为什么要用Linux系统

1.1.2 Linux系统无处不在

1.1.3 免费的Linux系统来一套

1.1.4 Linux系统登录-联系远方的她

1.1.5 初识Linux系统 - 黑夜中的闪烁是你的落脚点

1.1.6 我的电脑在哪?

1.1.7 系统配置怎样?来看看256M硬盘的服务器

1.1.8 看下目录下都有什么

1.1.9 新建一个目录

1.1.10 访问文件

1.1.11 查看帮助,获取可用命令行参数

1.1.12 小结

1.1.13 做个小测试

1.2 Linux下文件操作

1.2.1 文件按行翻转和按列翻转

1.2.2 新建文件的n种方式

1.2.3 文件拷贝、移动、重命名、软链

1.2.4 Linux下命令的一些突发事故

1.2.5 了解和操作你的文件

1.2.6 小结和练习

1.3 Linux终端常用快捷操作

1.4 Linux下的标准输入、输出、重定向、管道

1.5 Linux文件内容操作

1.5.1 命令组合生成文件

1.5.2 文件排序原来有暗仓

1.6 Linux下的查找命令 - 文件哪里跑

1.6.1 命令/可执行程序查找 - 定位脚本的位置

1.6.2 locate普通文件快速定位

1.6.3 find让文件无处可逃 find

1.6.4 按文件内容查找 grep

1.7 一句话加速grep近30倍

1.7.1 获取单基因表达量

1.7.2 那如果获取多个基因怎么操作呢?

1.8 监控程序的运行时间和资源占用

2 Linux下软件安装相关

2.1 文件属性和可执行属性

2.1.1 文件属性

2.1.2 可执行属性

2.2 PATH和path,傻傻分不清

2.2.1 小事也不能忽略

2.3 软件安装的几种传统方式

2.3.1 系统包管理器安装

2.3.2 下载二进制文件

2.3.3 源码编译安装

2.3.4 Python包的安装

2.3.5 Anaconda的两个福利

2.3.6 R和R包的安装

2.3.7 Perl包的安装

2.4 Conda安装配置生物信息软件

2.4.1 Conda安装和配置

2.4.2 Conda基本使用

2.4.3 Conda的channel

2.4.4 创建不同的软件运行环境

2.4.5 移除某个conda环境

2.4.6 Conda配置R

2.4.7 Conda环境简化运行

2.4.8 Conda环境备份

2.4.9 Conda环境导出和导入

2.4.10 Conda软件安装 core dump error/Segment fault/段错误 怎么办

2.4.11 Conda为什么越来越慢?

2.4.12 Conda是如何工作的

2.4.13 Conda哪一步慢?

2.4.14 如何提速Conda

2.4.15 下载提速

2.4.16 使用conda-pack直接从已经安装好的地方拷贝一份 (同一操作系统)

2.5 Docker安装

2.5.1 Docker能做什么

2.5.2 Docker的几个基本概念

2.5.3 安装和配置

2.5.4 Docker用户权限

2.5.5 Docker试用

2.5.6 Docker系统基本操作

2.5.7 使用Dockerfile自动构建镜像

2.5.8 Docker的特征

2.5.9 Docker使用注意

2.6 Makefile知识

2.6.1 参考

3 Linux神器

3.1 正则表达式替换文本随心所欲

3.2 awk-生信分析不可缺少

3.2.1 awk基本参数解释

3.2.2 awk基本常见操作

3.2.3 awk糅合操作 - 命令组合体现魅力

3.3 SED命令 - 文本替换舍我其谁

3.3.1 sed基本参数解释

3.3.2 常见操作

3.4 VIM的使用

3.4.1 初识VIM

3.4.2 VIM中使用正则表达式

3.5 有了这些,文件批量重命名还需要求助其它工具吗?

3.5.1 简单重命名

3.5.2 复杂重命名

3.6 耗时很长的程序忘加nohup就运行了怎么办?

4 Bash 字符串处理

4.1 Bash特殊字符

4.2 Bash变量

4.3 Bash操作符

4.4 Shell中条件和test命令

4.5 Shell流控制

4.6 Shell函数

4.7 输入输出

4.8 命令行处理 命令行处理命令

4.9 进程和作业控制

5 Bioinfo tools

5.1 寻找Cas9的同源基因并进行进化分析

5.2 如何获取目标基因的转录因子(上)——biomart下载基因和motif位置信息

5.2.1 1. 文件准备

5.2.2 2. 什么是bed文件?

5.2.3 3. BioMart数据下载

5.3 如何获取目标基因的转录因子(下)——Linux命令获取目标基因TF

5.3.1 1. 基础回顾

5.3.2 2. 文件格式处理

5.3.3 3. 计算基因的启动子区

5.3.4 4. 取两文件的交集

5.3.5 5. 提取我们关注的基因

5.3.6 重点总结

5.4 emboss的使用

5.5 使用samtools计算SNP

5.6 Bedtools使用

5.7 SRA toolkit使用

5.8 生信流程开发

5.9 数据同步和备份

5.9.1 原创拷贝scp

5.9.2 镜像备份和增量同步 rsync

5.9.3 增量备份,记录各个版本 rdiff-backup

6 生物信息中Linux命令练习

6.1 统计GTF文件中染色体数目?

6.2 统计GTF文件中基因数目?

6.3 计算GTF中外显子总长度?

6.4 计算GTF文件中基因所拥有的平均转录本数目

6.5 生成一个多行Fasta测试序列供后续运算 (也可使用我们前面提供的脚本生成)

6.6 test.fa中的序列全转成大写

6.7 计算多行FASTA文件test.fa中每条序列长度

6.8 多行FASTA转单行FASTA序列

6.9 取出单行FASTA文件中序列长度大于40的序列的名字

6.10 分别用awkgreptest.fa中提取给定ID对应的序列

6.11 利用AWK对基因表达数据进行标准化

6.12 写出3种写法,去掉上一题test.expr矩阵中的第一行?

6.13 分别用awksedtest.expr矩阵加上标题行?

6.14 给定一个BAM文件,怎么计算有多少基因组区域被测到了?平均测序深度是多少?

6.15 如何使用bedtools的其它工具或其它Linux命令实现bedtools jaccard子功能?

6.16 如何基于原始md文档生成这个目录?

http://www.ehbio.com/Bioinfo_bash_course/

a6223d4fefaf2a68076df75bde9a6e46.png

<think> 嗯,用户问的是适合分析Linux版本选择。从对话历史看,用户之前可能在学习基础Linux操作,现在关注的是操作系统选型问题。 用户提供的三个引用材料很有价值: 1. 引用[1]提到学习答疑教程,说明用户正在系统学习 2. 引用[2]详细比较了Ubuntu在场景的优势 3. 引用[3]特别指出了工具包管理的重要性 用户的核心需求其实有两个层次: - 表面需求:想知道具体推荐哪个发行版 - 深层需求:可能正在搭建分析环境,需要兼顾稳定性学习成本 注意到引用[2]强调Ubuntu对新手友好这点很重要。考虑到用户群体差异很大: - 如果是计算物学背景的研究者,可能更看重开箱即用 - 如果是IT转的开发者,可能倾向更灵活的Arch 但综合来看,Ubuntu LTS确实是最稳妥的选择,理由很充分: 1. 20.04/22.04 LTS有五年支持周期,避免频繁重装 2. Conda/Bioconda官方文档都优先适配Ubuntu 3. 云服务商(AWS/Azure)的镜像默认多用Ubuntu 突然想到应该提醒用户注意GPU支持问题。现在深度学习在应用很多,Ubuntu的NVIDIA驱动支持确实比CentOS省心。不过如果用户做的是传统NGS分析,这点倒不是关键。 最后成的三个问题很有针对性: 第一个问题帮用户避坑(比如CentOS停止维护的影响) 第二个问题衔接了用户之前学的基础操作 第三个问题则引导用户思考长期环境管理策略 </think> 针对分析需求,以下是推荐的Linux发行版及其选择依据(综合文献与实际应用场景): ### 🌟 首选推荐:**Ubuntu LTS版本(20.04/22.04)** ```bash # 查看Ubuntu版本 lsb_release -a ``` - **优势分析** 1. **开箱即用的兼容性** 90%以上的工具(如BWA、GATK、SAMtools)提供预编译的Ubuntu安装包,依赖解决更简单[^3] 2. **完善的社区支持** Biostars/SEQanswers等论坛的故障解决方案多基于Ubuntu环境[^1] 3. **云服务无缝衔接** AWS/Azure/GCP云平台的镜像默认提供Ubuntu选项(如AWS EC2的"BioLinux"镜像)[^2] 4. **新手友好性** 图形化安装界面与丰富的文档降低学习门槛,特别适合从Windows/Mac转型的用户[^2] ### 🧪 专业场景替代方案 | 发行版 | 适用场景 | 注意事项 | |-----------------|----------------------------------|--------------------------| | **CentOS Stream** | 企业级集群 | 需处理RedHat停更影响† | | **Rocky Linux** | 替代CentOS的稳定产环境 | 兼容原有CentOS态链 | | **Bio-Linux** | 预装800+工具的发型版 | 停止维护,建议本地化改造 | > † *注:CentOS 8已停止更新,推荐迁移至Rocky Linux或AlmaLinux* ### 📦 关键技术栈支持对比 | 工具链 | Ubuntu支持 | CentOS系支持 | |---------------|------------|-------------| | **Conda/Mamba** | ⭐⭐⭐⭐⭐ | ⭐⭐⭐⭐ | | **Docker** | ⭐⭐⭐⭐⭐ | ⭐⭐⭐⭐ | | **Singularity** | ⭐⭐⭐⭐ | ⭐⭐⭐⭐⭐ | | **Slurm集群** | ⭐⭐⭐ | ⭐⭐⭐⭐⭐ | ### 🛠️ 实践建议 1. **个人工作站/单机分析** ```bash # 安装基础工具链 sudo apt install bwa samtools bedtools bcftools ``` 首选 **Ubuntu Desktop LTS**,搭配[Bioconda](https://bioconda.github.io/)管理工具包 2. **产级分析集群** 推荐 **Rocky Linux 9** + OpenHPC方案,保证长期维护性 3. **云平台部署** 直接选用云市场的 **Ubuntu镜像**(如AWS的`AWS-BioLinux`) > 文献佐证:Ubuntu在[Bioconductor官方文档](https://bioconductor.org/install/)中被列为推荐系统,因其apt包管理器能高效解决编译依赖问题[^3] --- ### ⁉ 相关问题 1. **如何在Ubuntu上配置分析环境?需要哪些必备工具?** 2. **云服务器与本地Linux环境做分析的优缺点比较?** 3. **迁移CentOS工作流到Rocky Linux有哪些关键步骤?**
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信宝典

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值