跟着iMeta学做图|ggplot2包绘制棒棒糖图展示变量间的相关性

如果你使用本代码,请引用:Changwu Wu. 2022. Pan-cancer analyses reveal molecular and clinical characteristics of cuproptosis regulators. iMeta 1: e68.  https://doi.org/10.1002/imt2.68

代码编写及注释:农心生信工作室。

写在前面

气泡图 (bubble map) 具有多种衍生的形式,在气泡图中加入线段可以展现一些变量之间的相关性。本期我们挑选2022年12月5日刊登在iMeta上的Pan-cancer analyses reveal molecular and clinical characteristics of cuproptosis regulators- iMeta|湘雅医院刘庆组-泛癌分析揭示铜死亡调节子的临床和分子特征,选择文章的Figure 9A进行复现,基于ggplot2包,讲解和探讨棒棒糖图的绘制方法,先上原图:

129c58d25128a6771a350c30c54065de.gif

b953031e35259278b7e55a6850523f35.png

接下来,我们将通过详尽的代码逐步拆解原图,最终实现对原图的复现。

R包检测和安装

01

安装核心R包ggplot2以及一些功能辅助性R包,并载入所有R包。

if (!require("ggplot2"))
  install.packages('ggplot2') 
if (!require("cowplot"))
  install.packages('cowplot') 
# 加载包
library(ggplot2)
library(cowplot)

生成测试数据

02

原图表示铜死亡活性与药物敏感性(IC50值)之间的相关性。每一行代表一种药物和药物靶标。线的长度代表相关系数。点的大小代表统计学意义,点越大,统计学显著性越高。我们根据原图特征生成测试数据test.CSV。相关示例数据可以在GitHub上下载: https://github.com/iMetaScience/iMetaPlot/tree/main/221220Lollipops

#读取test.CSV对应表
df <- read.csv("test.CSV",header = T)
#固定列的顺序
df$Drug <- factor(df$Drug,levels = df$Drug)
df$Target <- factor(df$Target,levels = df$Target)
df$Target.Pathway <- factor(df$Target.Pathway,levels = df$Target.Pathway)

a44856960c591c8d291ebc43e26194ff.png

作图预览

03

开始作图,首先根据Grug一列做y轴,画一个最基本的气泡图:

p1 <- ggplot(df,aes(Correlation,Drug))+
  geom_point(aes(size = pvalue),color = "skyblue")

fcef9f8851e8543e111525bd34f7e355.png

04

添加线段,这里使用的关键函数是geom_segment,它可以通过映射x坐标和y坐标的起点终点,最终得到有方向由长度的向量。本例中所有线段都是垂直与x轴,长度代表相关性,因此需要先根据相关性生成一个包括x和y终点和起点的数据框:

#生成线段数据框
segment_df <- data.frame(x = 0,y = seq(1:15),xend = df$Correlation,yend = seq(1:15))
p1 <- ggplot(df,aes(Correlation,Drug))+
  geom_point(aes(size = pvalue),color = "skyblue")+
  geom_segment(segment_df,mapping = aes(x = x, y = y, xend = xend, yend = yend),size = 0.8,color = "skyblue")

66f4a19fe531a2639bbc8723c72ad7db.png

05

调整参数美化图片:

p1 <- ggplot(df,aes(Correlation,Drug))+
  geom_point(aes(size = pvalue),color = "skyblue")+
  geom_segment(segment_df,mapping = aes(x = x, y = y, xend = xend, yend = yend),size = 0.8,color = "skyblue")+
  scale_x_continuous(limits = c(0,0.152), #设置x轴范围
                     expand = expansion(mult = 0))+ #expansion函数的参数mult: 百分比间距,可以接受一个向量
  theme(panel.background = element_blank(), #删除背景
        panel.grid = element_line (colour = "lightgrey"), #设置网格颜色
        panel.border = element_rect(fill = NA,colour = "black",size = 0.8))+ #设置边框
  ylab("") #删除y轴名

e6113b68e6ba42d3c7b98cae8c032088.png

06

通过ggplot2绘制两幅只显示Target.Pathway和Target列名的图片,最后通过cowplot包将所有图片组合。

#Target
p2 <- ggplot(df,aes("",Target))+
  theme(panel.background = element_blank(),#去除背景
        panel.border = element_blank(), #去除边框
        axis.ticks.y = element_blank(), #去除y轴刻度
        axis.ticks.x = element_blank())+ #去除x轴刻度
  xlab("")+ #去除x轴标题
  ylab("")+ #去除y轴标题
  coord_fixed(ratio = 10) #将y轴和x轴标度比例设置为10:1
#Target.Pathway,同上
p3 <- ggplot(df,aes("",Target.Pathway))+
  theme(panel.background = element_blank(),#去除背景
        panel.border = element_blank(),
        axis.ticks.y = element_blank(),
        axis.ticks.x = element_blank())+
  xlab("")+
  ylab("")+
  coord_fixed(ratio = 10)


p <- plot_grid(p3,p2,p1,
             ncol = 3, #三张图片分三列合并
             rel_widths = c(1,1,2), #三列所占比例为1:1:2
             labels = c("Target.Pathway","Target","Drug"), #每一幅子图片标题名
             label_size = 8) #标题大小

a8a149f2b10186d3e92dc9b1c334d92f.png

完整代码

if (!require("ggplot2"))
  install.packages('ggplot2') 
if (!require("cowplot"))
  install.packages('cowplot') 
# 加载包
library(ggplot2)
library(cowplot)


#读取test.CSV对应表
df <- read.csv("test.CSV",header = T)
#固定列的顺序
df$Drug <- factor(df$Drug,levels = df$Drug)
df$Target <- factor(df$Target,levels = df$Target)
df$Target.Pathway <- factor(df$Target.Pathway,levels = df$Target.Pathway)


#生成线段数据框
segment_df <- data.frame(x = 0,y = seq(1:15),xend = df$Correlation,yend = seq(1:15))


p1 <- ggplot(df,aes(Correlation,Drug))+
  geom_point(aes(size = pvalue),color = "skyblue")+
  geom_segment(segment_df,mapping = aes(x = x, y = y, xend = xend, yend = yend),size = 0.8,color = "skyblue")+
  scale_x_continuous(limits = c(0,0.152), #设置x轴范围
                     expand = expansion(mult = 0))+ #expansion函数的参数mult: 百分比间距,可以接受一个向量
  theme(panel.background = element_blank(), #删除背景
        panel.grid = element_line (colour = "lightgrey"), #设置网格颜色
        panel.border = element_rect(fill = NA,colour = "black",size = 0.8))+ #设置边框
  ylab("") #删除y轴名


#Target
p2 <- ggplot(df,aes("",Target))+
  theme(panel.background = element_blank(),#去除背景
        panel.border = element_blank(), #去除边框
        axis.ticks.y = element_blank(), #去除y轴刻度
        axis.ticks.x = element_blank())+ #去除x轴刻度
  xlab("")+ #去除x轴标题
  ylab("")+ #去除y轴标题
  coord_fixed(ratio = 10) #将y轴和x轴标度比例设置为10:1
#Target.Pathway,同上
p3 <- ggplot(df,aes("",Target.Pathway))+
  theme(panel.background = element_blank(),#去除背景
        panel.border = element_blank(),
        axis.ticks.y = element_blank(),
        axis.ticks.x = element_blank())+
  xlab("")+
  ylab("")+
  coord_fixed(ratio = 10)


pdf("Figure 9A.pdf",width = 11, height = 5.7)
plot_grid(p3,p2,p1,
          ncol = 3, #三张图片分三列合并
          rel_widths = c(1,1,2), #三列所占比例为1:1:2
          labels = c("Target.Pathway","Target","Drug"), #每一幅子图片标题名
          label_size = 8) #标题大小
dev.off()
#> quartz_off_screen 
#>                 2

以上数据和代码仅供大家参考,如有不完善之处,欢迎大家指正!

更多推荐

(▼ 点击跳转)

iMeta 高引软件+视频解读

iMeta封面 | 宏蛋白质组学分析一站式工具集iMetaLab Suite(加拿大渥太华大学Figeys组)

c71a27c340d27551e0cdf681f2aa1574.png

▸▸▸▸

iMeta | 德国国家肿瘤中心顾祖光发表复杂热图(ComplexHeatmap)可视化方法

afd32a5e26aa2831b2633331e47018fc.png

▸▸▸▸

iMeta | 华南农大陈程杰/夏瑞等发布TBtools构造Circos图的简单方法

0d8c9cf1ccf1ea6298d3b4259208dce2.png

▸▸▸▸

iMeta | 高颜值高被引绘图网站imageGP

3a8298609735fa9e85b16d39f7385e0b.png

往期回顾

iMeta 第1卷第1期

2022/3

ba4abeb1409d58b91cc68850fcf261dd.jpeg

🔗:https://onlinelibrary.wiley.com/toc/2770596x/2022/1/1

iMeta 第1卷第2期

2022/6

3e424588ea23211d511702c66b2eaaa8.png

🔗:https://onlinelibrary.wiley.com/toc/2770596x/2022/1/2

期刊简介

“iMeta” 是由威立、肠菌分会和本领域数百位华人科学家合作出版的开放获取期刊,主编由中科院微生物所刘双江研究员和荷兰格罗宁根大学傅静远教授担任。目的是发表原创研究、方法和综述以促进宏基因组学、微生物组和生物信息学发展。目标是发表前10%(IF > 15)的高影响力论文。期刊特色包括视频投稿、可重复分析、图片打磨、青年编委、前3年免出版费、50万用户的社交媒体宣传等。2022年2月正式创刊发行!

联系我们

iMeta主页:http://www.imeta.science

出版社:https://wileyonlinelibrary.com/journal/imeta

投稿:https://mc.manuscriptcentral.com/imeta
邮箱:office@imeta.science

 微信公众号 

iMeta

 责任编辑 

微微 

往期精品(点击图片直达文字对应教程)

7808b5e5944e3559f81f1e281425dac7.jpeg

d74934be03bfa0e679c84f65e4c9c257.jpeg

b0e624179dd5115030b27cc55693c7e9.jpeg

fbbe99bbbf2e88ac808c954ed287d1da.jpeg

1407b1d34654b47e11f42f96940a86ae.jpeg

70a1b3860c63a23399d4cd08c2fbbf8c.jpeg

57f69046a421341454ccf54a649ae401.jpeg

8a47a842e02f34d49be8280a89d8edf2.jpeg

3bdebc2a8c2a63ae93bb18884ab331dd.jpeg

706f7a860384166faeaa636adf064170.jpeg

b6b299608792ae86b62f405359ad0217.jpeg

a3bc551e6d9fd4fd2e9c7329a023e544.jpeg

ffa2f075eb0445ea83a715c150b1953a.png

45708c2c4a534d13bb67167ef63d1fd2.png

c26e8c299d549753a5183d8adffd8d23.png

0f481722c9de365236e4fcb1759987c2.png

e55eb34b85b11b7c89ecb2b1f49c4f56.jpeg

b1f483c41cfa1169145632931622b6aa.jpeg

2c428d747ac36931f5a7f4fb2441e92b.jpeg

b0f0ff1a41ca15a31255d33a383b79a0.jpeg

86443b2d4357cb74ebd728260215c999.png

68d7991f69034e27678cb489e098fba4.png

e643b2401391fac26565a0cc0ff1ab48.jpeg

92e69ff625073eeb09427e1236d3f2e6.png

746a709e56952ebf1fc69332e2db2e42.png

0616fac8a0b4ee9e22515bfbe7322cae.jpeg

8dfcb8ce99e3f763c5ff724194f94b7a.png

42b6d867fd67d458508927607030c685.png

机器学习

后台回复“生信宝典福利第一波”或点击阅读原文获取教程合集

7a536c5a3b0d450668955ee09f1b4dbd.jpeg

5dad9ff16a17cf3b135c9c38a24d6f3b.jpeg

8aafcbf064885653e42c6b3bce0bc838.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值