自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 资源 (2)
  • 论坛 (1)
  • 收藏
  • 关注

原创 SVM算法

一. 拉格朗日乘子法 和 KKT条件最优化问题分类:拉格朗日乘子法:拉格朗日乘子法的分析推导:https://blog.csdn.net/hao5335156/article/details/82320082如何理解拉格朗日乘子法:https://www.matongxue.com/madocs/939/KKT条件: (后期还得好好整理)初始问题:...

2019-08-26 18:49:51 56

原创 Logistic回归和Softmax回归 对比

Logistic回归和Softmax回归 都是基于sigmoid函数:Logistic回归主要应用于二分类问题,回归问题的表达式: , 将得到的y值经过sigmoid函数转化为二分类问题.表示y=1的概率,其中单个样本的概率分布:m个样本的概率分布 --> 似然函数:对数似然函数:损失函数:Softm...

2019-08-25 21:09:04 337

原创 线性回归总结

线性回归总结线性学习中最基础的回归之一,本文从线性回归的数学假设,公式推导,模型算法以及实际代码运行几方面对这一回归进行全面的剖析~一:线性回归的数学假设1.假设输入的X和Y是线性关系,预测的y与X通过线性方程建立机器学习模型2.输入的Y和X之间满足方程Y=X+, 是误差项, 且1,2,m之间独立同分布,且均值=0,方差为某一定值,根据中心极限定理推出服从高斯分...

2019-08-25 17:50:23 97

原创 批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解

参考:https://www.cnblogs.com/lliuye/p/9451903.html疑问:这里我们假设有30W个样本,对于BGD而言,每次迭代需要计算30W个样本才能对参数进行一次更新,需要求得最小值可能需要多次迭代(假设这里是10);而对于SGD,每次更新参数只需要一个样本,因此若使用这30W个样本进行参数更新,则参数会被更新(迭代)30W次,而这期间,SGD就...

2019-08-24 21:10:28 42

原创 回归算法之Ridge,Lasso,Elastic Net回归算法

维数灾难何谓高维数据?高维数据指数据的维度很高,甚至远大于样本量的个数。高维数据的明显的表现是:在空间中数据是非常稀疏的,与空间的维数相比样本量总是显得非常少。 在分析高维数据过程中碰到最大的问题就是维数的膨胀,也就是通常所说的“维数灾难”问题。研究表明,随着维数的增长,分析所需的空间样本数会呈指数增长。数据降维 对于高维数据,维数灾难所带来的过拟合问题,其解决思...

2019-08-24 14:27:15 864

转载 推荐系统之矩阵分解及其Python代码实现

请参考链接,,之后整理

2019-08-19 16:03:57 610

原创 《推荐系统实战》| 七. 推荐系统实例

本章将首先介绍推荐系统的外围架构,然后介绍推荐系统的架构,并对架构中的每个模块的设计进行深入讨论。7.1 外围架构 推荐系统依赖的两个外围系统: UI系统(记录用户各种各样的行为)和用户行为日志存储系统. 一般来说,需要实时存取的数据存储在数据库和缓存中,而大规模的非实时的数据存储在分布式文件系统(HDFS)上.7.2 推荐系统架构1. 推荐系统联...

2019-08-18 22:22:39 1229

原创 FM模型理论和实践

1、FM背景在计算广告和推荐系统中,CTR预估(click-through rate)是非常重要的一个环节,判断一个商品的是否进行推荐需要根据CTR预估的点击率来进行。在进行CTR预估时,除了单特征外,往往要对特征进行组合。对于特征组合来说,业界现在通用的做法主要有两大类:FM系列(FM,FFM,DeepFM,DeepFFM,wide&deep,xDeepFM)与Tree系列(如GBD...

2019-08-06 14:50:31 242

转载 特征工程之特征选择

  特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样是确定的步骤,更多是工程上的经验和权衡。因此没有统一的方法。这里只是对一些常用的方法做一个总结。本文关注于特征选择部分。后面还有两篇会关注于特征表达和特征预处理。1. 特征的来源  在做数据分析的时候,特征的来源一般有两块,一块是业务已经整理好各种特征数据,我们需要去找出适合我们问题需要的特征;另一块是我们从业务特征中自己...

2019-08-02 15:28:14 103

转载 特征工程之特征预处理

  在前面我们分别讨论了特征工程中的特征选择与特征表达,本文我们来讨论特征预处理的相关问题。主要包括特征的归一化和标准化,异常特征样本清洗与样本数据不平衡问题的处理。1. 特征的标准化和归一化  由于标准化和归一化这两个词经常混用,所以本文不再区别标准化和归一化,而通过具体的标准化和归一化方法来区别具体的预处理操作。  z-score标准化:这是最常见的特征预处理方式,基本所有的线性模型在拟...

2019-08-02 15:24:40 149

转载 特征工程之特征预处理

在前面我们分别讨论了特征工程中的特征选择与特征表达,本文我们来讨论特征预处理的相关问题。主要包括特征的归一化和标准化,异常特征样本清洗与样本数据不平衡问题的处理。1. 特征的标准化和归一化由于标准化和归一化这两个词经常混用,所以本文不再区别标准化和归一化,而通过具体的标准化和归一化方法来区别具体的预处理操作。    z-score标准化:这是最常见的特征预处理方式,基本所...

2019-08-02 15:21:41 38

原创 特征工程之特征表达

特征工程之特征表达特征工程之特征表达在特征工程之特征选择中,我们讲到了特征选择的一些要点。本篇我们继续讨论特征工程,不过会重点关注于特征表达部分,即如果对某一个特征的具体表现形式做处理。主要包括缺失值处理,特殊的特征处理比如时间和地理位置处理,离散特征的连续化和离散化处理,连续特征的离散化处理几个方面。缺失值处理 特征有缺失值是非常常见的,大部分机器学习模型在拟合前需要所有的特征都有...

2019-08-02 15:03:16 86

智能小车报告

关于电子设计大赛的智能小车报告,报告内容详细,值得您参考

2013-01-15

2010年山东省大学生电子设计竞赛本课组A、B题

竞赛前请仔细阅读本网站竞赛通知栏的 2010 年山东大学生高教社 XILINX 杯电子设计竞赛 规则和纪律 A题 瞬态响应测试仪 【本科组】 一、任务 要求采用指定的 FPGA 实验平台(含 EXCD-1 开

2013-01-15

人鱼线的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除