Just for fun的专栏

好玩,最重要

ubuntu16.04+gtx1060+cuda8.0+caffe安装、测试经历

首先说明,这是在台式机上的安装测试经历,首先安装的win10,然后安装ubuntu16.04双系统,显卡为GTX1060  台式机显示器接的是GTX1060 HDMI口,win10上首先安装了最新的GTX1060驱动372.54 废话不多说,上车吧,少年 一、首先安装nvidia显卡驱动 ...

2017-10-17 17:07:10

阅读数:384

评论数:0

树回归

实际生活中很多问题都是非线性的,不可能使用全局线性模型来拟合任何数据     一种可行的方法是将数据集切分成很多份易建模的数据,然后利用线性回归技术来建模.如果首次切分后仍然难以拟合线性模型就继续切分.在这种切分方式下,树结构和回归法就相当有用.        ID3的做法是每次选取当前最佳的特征...

2017-10-10 09:27:19

阅读数:170

评论数:0

预测数值型数据:回归

一,标准回归函数 from numpy import * def loadDataSet(fileName): #general function to parse tab -delimited floats numFeat = len(open(fileName).readl...

2017-10-09 21:13:57

阅读数:188

评论数:0

利用AdaBoost元算法提高分类性能

当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见,这就是元算法(meta-algorithm)或者叫集成方法(ensemble method)背后的思路.       接下来我们将集中关注一个称作AdaBoost的最流行的元算法              优点:泛化错误率低,易...

2017-10-09 18:37:59

阅读数:151

评论数:0

决策树

一, 信息增益 H = - sum( p(xi) *log2(p(xi)) ) from math import log import operator def createDataSet(): dataSet = [ [1, 1, 'yes'], [1, 1, 'y...

2017-10-09 09:27:45

阅读数:258

评论数:0

最近收集的中科院研究生教学视频

[?][-] eD2k链接   帮助 | eMule官方 | eMule Fans 电骡爱好者 | eMule-Mods.de | 插件主页 小波与滤波器组-28-中科院.iso 查源 2.27GB [面向对象程序设计CP...

2017-10-08 16:47:20

阅读数:1530

评论数:2

EM算法及其应用(代码)

最近上模式识别的课需要做EM算法的作业,看了机器学习公开课及网上的一些例子,总结如下:(中间部分公式比较多,不能直接粘贴上去,为了方便用了截图,请见谅) 概要 适用问题 EM算法是一种迭代算法,主要用于计算后验分布的众数或极大似然估计,广泛地应用于缺损数据、截尾数据、成群数据、带有讨厌参数的...

2017-10-08 16:45:30

阅读数:281

评论数:0

常用采样方法

常用采样方法 最近在学习 MCMC,一种特殊的采样方法,顺便把其他常用的方法了解了一下。 为什么要采样? 很多问题,我们只需要使用数学解析的方法即可解决。例如对 f(x)做积分,如果 f(x) = x^2,那么直接积分就行,很简单。 若f(x)是标准正态分布的概率密度函...

2017-10-08 15:26:59

阅读数:237

评论数:0

使用FP-growth算法来高效发现频繁项集

在搜索引擎中输入一个单词或者单词的一部分,就会自动补全查询词项   FP-growd基于Apriori构建,但在完成相同任务时采用了一些不同的技术.这里的任务是将数据集存储在一个特定的称作FP树的结构之后发现频繁项集或频繁项对,即常在一块出现的元素项的集合FP树.这种做法是的算法的执行速度要快于...

2017-10-07 21:22:12

阅读数:184

评论数:0

使用apriori算法进行关联分析

关联分析:从大规模数据集中寻找物品之间的隐含关系。目标包括两项:发现频繁项集和发现关联规则   主要问题在于,寻找物品的不同组合是一项十分耗时的任务,所需的计算代价很高,蛮力搜索方法并不能解决这个问题。 一、关联分析   {尿布与啤酒}   Apriori算法     优点:易编码实现 ...

2017-10-07 19:21:52

阅读数:377

评论数:0

推荐研究互联网必读的10本书

01《长尾理论2.0》  THE LONG TAIL:why the future of business is selling less of more  [美]克里斯·安德É 著 出版时间:2009年5月  长尾理论无疑是当代商务人士最为关注的焦点之一。曾¾,克里斯·安德É在...

2017-10-07 19:14:45

阅读数:277

评论数:0

chapter8:聚类---群组发现

一、k-means聚类

2017-10-06 20:06:00

阅读数:159

评论数:0

chapter7:朴素贝叶斯及文本---非结构化文本分类

非结构化数据包括邮件、推文、博文、新闻报道等对象。这些数据看上去(至少一眼看上去)并不能很清晰地通过表格来描述。 一、一个文本正负倾向性的自动判定系统   这里的数据集称为训练语料库(training corpus)。语料库中的每条记录即使只是一段140个字符的推文,每个文档都标注了正面或负面...

2017-10-06 16:49:43

阅读数:177

评论数:0

20 个顶尖的 Python 机器学习开源项目

1. Scikit-learn www.github.com/scikit-learn/scikit-learn Scikit-learn 是基于Scipy为机器学习建造的的一个Python模块,他的特色就是多样化的分类,回归和聚类的算法包括支持向量机,逻辑回归,朴素贝叶斯分类器,随机...

2017-10-06 11:36:17

阅读数:235

评论数:0

机器学习算法与Python实践之支持向量机(SVM)初级

机器学习算法与Python实践之支持向量机(SVM)初级          机器学习算法与Python实践这个系列主要是参考《机器学习实战》这本书。因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法。恰...

2017-10-06 11:32:39

阅读数:114

评论数:0

SVM -支持向量机原理与实践之实践篇

SVM -支持向量机原理与实践之实践篇 前言 最近太忙,这几天还是抽空完成实践篇,毕竟所有理论都是为实践服务的,上一篇花了很大篇幅从小白的角度详细的分析了SVM支持向量积的原理,当然还有很多内容没有涉及到,例如支持向量回归,不敏感损失函数等内容,但是也不妨碍我们用支持向量机去实...

2017-10-06 11:28:25

阅读数:236

评论数:0

chapter6:概率及朴素贝叶斯--朴素贝叶斯

利用近邻算法,很难量化分类的置信度。而基于概率的分类算法---贝叶斯算法却不仅能够分类而且能够给出分类的概率,比如这个运动员80%的概率是一名篮球运动员   P(h)称为h的先验概率prior probability        P(h | d)称为h的后验概率posterior probabi...

2017-10-05 21:40:25

阅读数:160

评论数:0

chapter5:分类的进一步探讨---算法评估及kNN

一、10折交叉验证(10-fold cross validation)   将数据集随机分成10份,使用其中9份进行训练而将另外1份用作测试。该过程可以重复10次,每次使用的测试数据不同 二、留一法(Leave-One-Out)     在机器学习领域,n折交叉验证(n是数据集中样本的数目)...

2017-10-05 20:28:39

阅读数:136

评论数:0

chapter4:内容过滤及分类---基于物品属性的过滤

协同过滤也称为社会过滤,利用了用户社区的力量来帮助进行推荐,它的难点,包括数据稀疏和扩展性带来的问题,另一个问题是基于协同过滤的推荐系统倾向于推荐已流行的物品,即偏向于流行事物。作为一个极端的例子,考虑一个全新乐队刚发布的专辑,由于乐队和专辑从没被人评价过或者没人购买过,因此它永远不会被推荐,这就...

2017-10-05 18:28:12

阅读数:97

评论数:0

Ptyhon可视化:chapter3--绘制并定制化图表

一、定义图标类型---柱状图、线形图和堆积柱状图    从matplotlib.pyplot库的一些常用图表入手 matplotlib中的基本图表包括一下元素: x轴和y轴x轴和y轴刻度x轴和y轴刻度标签绘图区域 from matplotlib.pyplot import * ...

2017-10-04 19:10:30

阅读数:198

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭