Just for fun的专栏

好玩,最重要

精通Python自然语言处理 3 :形态学

    形态学可以定义为使用语素对单词的构成进行研究,语素是具有意义的最小语言单位。1、形态学简介    语素有两种类型:词根和词缀(后缀、前缀、中缀和环缀)。词根可以独立存在,词缀不能以自由的形式存在。2、理解词干提取器     通过去除单词中的词缀以获取词干的过程。为了提高信息检索的准确性,搜...

2018-05-28 23:56:44

阅读数:249

评论数:0

精通Python自然语言处理 2 :统计语言建模

代码https://github.com/PacktPublishing/Mastering-Natural-Language-Processing-with-Python1、理解单词频率   词的搭配可以被定义为倾向于并存的两个或多个标识符的集合。如The United States    Un...

2018-05-28 21:04:43

阅读数:306

评论数:0

精通Python自然语言处理 1 :字符串操作

1、切分    将文本分割成更小的并被称作标识符的模块的过程。sent_tokenize函数使用了NLTK包的一个叫PunktSentenceTokenizer类的实例。基于那些可以标记句子开始和结束的字母和标记符号,这个歌实例已经被训练用于对不同的欧洲语言执行切分。...

2018-05-28 17:00:26

阅读数:320

评论数:3

深入理解TensorFlow架构设计与实现原理 3 :基础概念

1、编程范式:数据流图   声明式编程与命令式编程的对比讨论   数据流图: tensorflow 1.2.02、数据载体:张量   张量:Tensor   稀疏张量:SparseTensor类,以键值对的形式表示高维稀疏数据,它包含indices、values和dense_shape这3个属性。...

2018-05-28 15:25:13

阅读数:1083

评论数:0

从头实现一个深度学习的对话系统--1,论文简介

https://blog.csdn.net/liuchonge/article/details/78809555上篇文章我们介绍了DRL用于对话系统的应用,看完论文我们会发现,其是在一个Seq-to-Seq模型的基础上进行重新训练进而得到效果的提升,那么自然我们会想到如何使用Seq-to-Seq模...

2018-05-27 16:15:53

阅读数:96

评论数:0

RNN代码解读之char-RNN with TensorFlow(model.py)

此工程解读链接(建议按顺序阅读): RNN代码解读之char-RNN with TensorFlow(model.py) RNN代码解读之char-RNN with TensorFlow(train.py) RNN代码解读之char-RNN with TensorFlow(util.py) RNN...

2018-05-27 16:11:10

阅读数:196

评论数:0

深度学习--Tensorflow初体验

为了方便,这里使用Docker方式安装Tensorflow。在学习阶段,更推荐使用才云科技的镜像: docker pull cargo.caicloud.io/tensorflow/tensorflow:0.12.0下载镜像完成后,启动:docker run -it -d -p 8888:8888...

2018-05-27 10:46:23

阅读数:142

评论数:0

Tensorflow实现RNN(LSTM)手写数字识别

import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 载入数据 mnist = input_data.read_data_sets("MNIST_data/&am...

2018-05-27 09:24:04

阅读数:124

评论数:0

RNN-循环神经网络和LSTM_01基础

一、介绍1、什么是RNN传统的神经网络是层与层之间是全连接的,但是每层之间的神经元是没有连接的(其实是假设各个数据之间是独立的)这种结构不善于处理序列化的问题。比如要预测句子中的下一个单词是什么,这往往与前面的单词有很大的关联,因为句子里面的单词并不是独立的。RNN 的结构说明当前的的输出与前面的...

2018-05-27 00:46:29

阅读数:102

评论数:0

面向机器智能的TensorFlow实战8:序列分类

       序列分类的任务是为整个输入序列预测一个类别标签。在许多领域中,包括基因和金融领域,这样的问题都极为常见。NLP中的一个突出例子是情绪分析。       使用国际电影数据库的影评数据集,该数据集的目标值是二元的---正面的和负面的。将逐个单词地查看每条评论。依据最后的那个单词的活性值,...

2018-05-26 22:22:39

阅读数:69

评论数:0

面向机器智能的TensorFlow实战7:词向量嵌入

    本节将实现一个能够学习词向量的模型。对于NLP任务,这是一种表示词的强大方式。    作为语义关联问题的一个解决方案,依据共生关系表示单词的思路由来已久。这种方法的基本思路是,遍历一个大规模文本语料库,针对每个单词,统计其在一定距离范围内的周围词汇。然后,用附近词汇的规范化数量表示每个词语...

2018-05-26 18:44:43

阅读数:139

评论数:0

面向机器智能的TensorFlow实战6:循环神经网络与自然语言处理

      本章将探讨序列模型(sequential model),可对序列输入进行分类或标记,生成文本序列或将一个序列转换为另一个序列。RNN提供了一些构件,可以很好地切入全连接层和卷积层的工具集。1、RNN简介       许多真实问题本质上都是序列化的。2006年提出的一种LSTM。RNN能...

2018-05-26 11:32:53

阅读数:89

评论数:0

面向机器智能的TensorFlow实战5:目标识别与分类

  本节用于训练CNN模型的数据集为Stanford的Dogs Dataset是ImageNet的一个子集  卷积层(tf.nn.conv2d)、非线性变换层(tf.nn.relu)、池化层(tf.nn.max_pool)及全连接层(tf.nn.matmul)   TensorFlow的输入流水线...

2018-05-26 00:29:26

阅读数:127

评论数:0

面向机器智能的TensorFlow实战4:机器学习基础

代码 https://github.com/backstopmedia/tensorflowbook.git1、监督学习简介数据流图的高层、通用训练闭环:一种常用的方法是将原始数据集一分为二,将70%的样本用于训练,30%用于评估。2、保存训练检查点   防止突然断电3、 线性回归   目标是找到...

2018-05-25 19:44:20

阅读数:76

评论数:0

面向机器智能的TensorFlow实战2:TensorFlow基础

1、数据流图简介      两个基础构件:节点和边      构建第一个TensorFlow数据流图:>>> import tensorflow as tf >>> ...

2018-05-24 22:37:10

阅读数:139

评论数:0

面向机器智能的TensorFlow实战1:安装

https://www.tensorflow.org/versions/master/get_started/os_setup.html1、选择安装环境三种环境:一般而言,如果准备在单机上安装和使用TensorFlow,建议采用Virtualenv或Conda,能够以较小的代价解决依赖冲突问题,且...

2018-05-24 16:22:23

阅读数:103

评论数:0

Ubuntu boot分区文件误删,系统无法启动_恢复

boot 启动分区文件误删恢复:1先制作启动盘2进入try ubuntu 模式3.恢复grub   sudo -i   mount /dev/sda2 /mnt        (系统根目录所在的分区)   mount /dev/sda1 /mnt/boot (如果boot是单独分区必须加入此操作)...

2018-05-24 15:34:20

阅读数:172

评论数:0

通过 Grub 来引导启动 UBUNTU

老样子,先分享一篇文章——用 EasyBCD 硬盘安装 Ubuntu(适用于Windows 7/8)http://forum.ubuntu.org.cn/viewtopic.php?t=392854本文适用人群:对GRUB没有基础,但是遇到与博主相同问题,同时希望对GRUB有所了解的朋友处理了两种...

2018-05-24 15:33:06

阅读数:273

评论数:0

Python爬虫开发与项目实战 4: HTML解析大法

Firebug工具的使用、正则表达式和Beautiful soup4.1 初识Firebug   XPath和CSS查找路径表达式4.2 正则表达式   多练习4.3 强大的BeautifulSoup    从HTML或XML文件中提取数据的Python库    sudo apt-get inst...

2018-05-15 22:13:17

阅读数:102

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭