Just for fun的专栏

好玩,最重要

排序:
默认
按更新时间
按访问量

跟老齐学Django 4:扩展网站功能

数据库配置 users_like = models.ManyToManyField(User, related_name="articles_like", blank=True) 多对多的关系 ./mysite/settings.py ...

2018-10-04 18:00:01

阅读数:55

评论数:0

django restful

$ pip3 install djangorestframework $ pip3 install django-filter $ pip3 install Markdown Scrum板数据图 在任何项目中,对数据的建模都是关键的第一步,需要考虑的要点: 任务板通常见于Scrum风格的...

2018-10-03 15:57:55

阅读数:23

评论数:0

跟老齐学Django 3:文章管理

用户生成内容 $ python3 manage.py startapp article 创建数据模型、表单、视图函数、前端模板和配置URL 用户和文章栏目之间是“一对多”的关系,在Django中,模型对象之间的关系可以概括为“一对一”、“一对多”和“多对多”,分别对应OneToOneFi...

2018-10-03 12:11:44

阅读数:33

评论数:0

跟老齐学Django 2:用户管理

模板和静态文件:./mysite/setting.py    都配置在网站根目录下 TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS...

2018-10-02 16:05:01

阅读数:81

评论数:0

跟老齐学Django 1

https://www.djangoproject.com/ pip install Django==1.11.1 import django print(django.get_version()) 创建一个Django项目:django-admin startproject mysit...

2018-09-30 19:20:18

阅读数:63

评论数:0

CSS3世界

三、CSS边框 盒子阴影 四、CSS3背景 五、CSS3文本 六、CSS3颜色特性 七、盒模式 八、伸缩布局盒模式 9、CSS3多列布局          ....

2018-09-26 18:54:42

阅读数:29

评论数:0

TensorFlow学习指南6:词向量

word2vec # -*- coding: utf-8 -*- """ Created on Thu Dec 29 00:39:23 2016 @author: tomhope ""&quot...

2018-09-17 17:38:06

阅读数:39

评论数:0

TensorFlow学习指南3:文本及序列

RNN import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data DATA_DIR = '/tmp/data/mnist' NUM_STEPS = 1000 MINIBATCH_SIZ...

2018-09-14 17:48:55

阅读数:29

评论数:0

语义依存分析 表

https://www.ltp-cloud.com/intro/#srl_how 语义依存分析 (Semantic Dependency Parsing, SDP),分析句子各个语言单位之间的语义关联,并将语义关联以依存结构呈现。 使用语义依存刻画句子语义,好处在于不需要去抽象词汇本身,而是通过...

2018-09-10 20:40:10

阅读数:57

评论数:0

语义角色标注表

LTP 的语义角色  https://www.ltp-cloud.com/intro/#srl_how 语义角色标注 (Semantic Role Labeling, SRL) 是一种浅层的语义分析技术,标注句子中某些短语为给定谓词的论元 (语义角色) ,如施事、受事、时间和地点...

2018-09-10 20:29:02

阅读数:60

评论数:0

形式逻辑

1、判断 2、演绎推理 3、归纳法 简单枚举、分类、概率与统计、假说等  

2018-09-10 16:44:33

阅读数:27

评论数:0

TensorFlow学习指南1:基础知识

git clone https://github.com/Hezi-Resheff/Oreilly-Learning-TensorFlow Softmax实例,MNIST http://yann.lecun.com/exdb/mnist/ import tensorflow as tf fr...

2018-09-07 20:33:50

阅读数:60

评论数:0

Python预测分析(7):用Python构建集成模型

   Python工具包的易用性、所能达到的准确性、训练所需的时间等等 7.1 用Python集成方法工具包解决回归问题      构建随机森林模型来预测红酒口感:scikit-learn中RandomForestRegressor的类构造函数如下 sklearn.ensemble.Rand...

2018-08-28 17:59:27

阅读数:109

评论数:0

Python预测分析(6):集成学习

       集成方法的关键是开发出一种可以生成大量近似独立的模型的方法,然后把它们集成起来。集成方法是由两层算法组成的层次架构。底层的算法叫作基学习器。目前广泛使用的上层算法主要有:投票(bagging)、提升(boosting)和随机森林(random forests)。严格地讲,随机森林实际...

2018-08-27 17:26:36

阅读数:34

评论数:0

Python预测分析(2):预测模型的构建--平衡性能、复杂性以及大数据

      影响机器学习模型效果的因素 3.1 基本问题:理解函数逼近       数据清洗和特征工程       特征工程一般需要通过一个由人工参与的、迭代的过程来完成特征选择,决定可能最优的特征,并且尝试不同的特征组合。 3.2 影响算法选择及性能的因素---复杂度以及数据     ...

2018-08-19 17:58:11

阅读数:86

评论数:0

概率图模型、原理与技术(3):贝叶斯网表示

       目标是在某个随机变量的集合X={X1, ..., Xn}上表示联合分布P。即使在变量为二值,n个变量的联合分布也需要2^n-1个数字的2^n个不同赋值的概率。 3.1 独立性性质的利用      条件参数化确实为更复杂分布的紧凑表示奠定了基础。      朴素贝叶斯模型:假设所...

2018-08-09 09:37:39

阅读数:58

评论数:0

概率图模型、原理与技术(2):基础知识

      在线查询:http://pgm.stanford.edu 表示、推理和学习是构建智能系统的关键部分,陈述性表示是世界模型的一个合理编码。我们需要能够有效地利用这个表示在很广的范围回答人们感兴趣的问题。还有,我们需要能够结合专家的知识和积累的数据来获取这个分布。 2.1 概...

2018-07-31 10:08:34

阅读数:96

评论数:0

《中文文本信息抽取模型与方法研究》5:基于论元结构的事件要素及其角色识别

       论元结构是沟通认知与句法结构的桥梁,是语义和句法的接口,在现代句法学和语义学研究中有着相当重要的地位,对于确定句子含义和进行文本理解意义重大。利用CRF来识别事件要素及其角色的方法。         语义分析旨在让计算机能够根据句子的句法结构和句子中每个实词的词义推到出这个句子的意...

2018-07-24 20:25:42

阅读数:59

评论数:0

《中文文本信息抽取模型与方法研究》4:特定类型事件的探测与分类

     事件探测和分类是基于触发词探测的事件信息抽取中的首要任务,对事件信息抽取的后继任务至关重要。一种基于最大熵模型的事件分类方法,该方法能够综合事件表述语句中的触发词信息及各类上下文特征对事件进行分类。       确定的事件类别正确与否对事件模板的选择以及究竟要抽取哪些事件要素来填充模板...

2018-07-24 18:49:35

阅读数:121

评论数:0

《中文文本信息抽取模型与方法研究》3:事件抽取模式的自动获取

     传统的信息抽取系统大多是基于模式匹配的,因此,如何自动获取抽取模式就成为信息抽取中的一个核心问题。本章提出了一种从未标注的中文文本中基于自扩展策略自动获取时间抽取模式的算法,该算法从少数几个种子抽取模式开始,通过一个增量迭代的过程发现新模式,每一轮迭代从三个层次对抽取模式进行扩展,然后采...

2018-07-24 17:40:16

阅读数:325

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭