知识库--ZooKeeper+Quorums+脑裂+为什么机器数为奇数(59)

ZooKeeper Quorums
In quorum mode, ZooKeeper replicates its data tree across all servers in the ensemble. But if a client had to wait for every server to store its data before continuing, the delays might be unacceptable. In public administration, a quorum is the minimum number of legislators required to be present for a vote. In ZooKeeper, it is the minimum number of servers that have to be running and available in order for ZooKeeper to work. This number is also the minimum number of servers that have to store a client’s data before telling the client it is safely stored. For instance, we might have five ZooKeeper servers in total, but a quorum of three. So long as any three servers have stored the data, the client can continue, and the other two servers will eventually catch up and store the data.

It is important to choose an adequate size for the quorum. Quorums must guarantee that, regardless of delays and crashes in the system, any update request the service positively acknowledges will persist until another request supersedes(取代) it.

//小于半数 造成数据丢失(脑裂)
To understand what this means, let’s look at an example that shows how things can go wrong if the quorum is too small. Say we have five servers and a quorum can be any set of two servers. Now say that servers s1 and s2 acknowledge that they have replicated a request to create a znode /z. The service returns to the client saying that the znode has been created. Now suppose servers s1 and s2 are partitioned away from the other servers and from clients for an arbitrarily long time, before they have a chance to replicate the new znode to the other servers. The service in this state is able to make progress because there are three servers available and it really needs only two according to our assumptions, but these three servers have never seen the new znode /z. Consequently, the request to create /z is not durable.

//避免脑裂 正常服务的servers中至少有一个是最新的–>notify others
To avoid this problem, in this example the size of the quorum must be at least three, which is a majority out of the five servers in the ensemble. To make progress, the ensemble needs at least three servers available. To confirm that a request to update the state has completed successfully, this ensemble also requires that at least three servers acknowledge that they have replicated it. Consequently,* if the ensemble is able to make progress, then for every update that has completed successfully, we have at least one server available that contains a copy of that update*.

Using such a majority scheme, we are able tolerate the crash of f servers, where f is less than half of the servers in the ensemble. For example, if we have five servers, we can tolerate up to f = 2 crashes. The number of servers in the ensemble is not mandatorily odd, but an even number actually makes the system more fragile. Say that we use four servers for an ensemble. A majority of servers is comprised of three servers. However, this system will only tolerate a single crash, because a double crash makes the system lose majority. Consequently, with four servers, we can only tolerate a single crash, but quorums now are larger, which implies that we need more acknowledgments for each request. The bottom line is that we should always shoot for an odd number of servers.//想一想 三台机器集合中挂掉一台机器的概率大 还是 四台机器集合中挂掉一台机器的概率大 O(∩_∩)O

We allow quorum sets other than majority quorums.//集合

没有更多推荐了,返回首页