scala学习 转载自过往记忆(https://www.iteblog.com/)本文链接: 【十个惊人的Scala集合操作函数】(https://www.iteblog.com/archives/1946.html)原文链接:10 amazing scala collection functions 当我操作 Scala 集合时,我一般会进行两类操作:转换操作(transformation )和...
linux 修改python environment(转) which python 因为系统会自动在环境中找寻python2.7这个文件并启动,但会优先找/usr/bin下的启动文件,所以当#python时,还是会进入2.7的默认系统/usr/bin/python2.7 进入/usr/bin,查看python ls -trl | grep python发现python是链接到/usr/bin/python的将python删除,rm...
ubuntu + cuda+cudnn+tensorflow-gpu+docker+tensorflow-serving sudo dpkg -i cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64.debsudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub sudo apt-get updatesudo apt-get install cudagredit ~/.bashrcexport ...
TensorFlow矩阵向量运算 1 向量点乘 结果是一个向量在另一个向量方向上投影的长度,是一个标量。 2 向量叉乘 结果是一个和已有两个向量都垂直的向量。 向量a = (x1,y1),b = (x2,y2) a *b = x1*x2+y1*y2 =|a||b|cos a叉乘b = x1 * y2 - x2 * y1=|a||b|sin tensorflow 3. 矩阵乘 tf.matmul(a,b)//matr
sklearn、TensorFlow、keras模型保存与读取 一、sklearn模型保存与读取 1、保存from sklearn.externals import joblibfrom sklearn import svmX = [[0, 0], [1, 1]]y = [0, 1]clf = svm.SVC()clf.fit(X, y) joblib.dump(clf, "train_model.m")2、读取clf = joblib.load
python 判断当前句子语种 1、判断字符串中是否包含中文 def check_contain_chinese(check_str): for ch in check_str.decode('utf-8'): if u'\u4e00' <= ch <= u'\u9fff': return True return False2、判断当前字符串所属语种import langid
归一化 归一化方法有两种形式,一种是把数变为(0,1)之间的小数,一种是把有量纲表达式变为无量纲表达式。主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。 特征归一化主要有3种方法:1.总和归一化(sumNormalizer):就是计算所有文档同一个特征值的总和。即每一个特征下标都有一个总和。v = v / ∑v_i zscore归一化(Zsco
python ltp使用 1、安装 pip install pyltp 2、官网下载ltp model(注意版本,多试试几个) 3、测试#other simple modelimport codecsimport osfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn.feature_selection import SelectPerc
git 配置和使用 配置对象:GitHubgithub ssh 配置步骤1设置git的user name和email:$ git config --global user.name "qfzxhy"$ git config --global user.email "qfzxhy@gmail.com"2生成SSH密钥$ ssh-keygen -t rsa -C “qfzxhy@gmail.com”3添加密钥
tensorflow常用优化函数 1、softmax_cross_entropy_with_logits() 这个函数的作用就是计算最后一层是softmax层的cross entropy,只不过tensorflow把softmax计算与cross entropy计算放到一起了,用一个函数来实现,用来提高程序的运行速度,原话就是it performs a softmax on logits internally for effici
linux scp 1、拷贝本机/home/qxc/tx整个目录至远程主机192.168.1.100的/home/qxc目录下。-r:recursivescp -r /home/qxc/tx/ root@192.168.1.100:/home/qxc2、拷贝单个文件至远程主机scp /home/qxc/tx/test.txt root@192.168.1.100:/home/qxc3、远程文件/文件夹下载 举例,把
正则表达式括号区分 正则表达式中有3种类型括号,分别是() [] {}。必须要清晰的了解每一个括号的作用 ()是为了提取匹配的字符串。表达式中有几个()就有几个相应的匹配字符串。在Java中是与group()函数相关的 []是定义匹配的字符范围。比如 [a-zA-Z0-9] 表示相应位置的字符要匹配英文字符和数字。[\s*]表示空格或者*号。 {}一般用来表示匹配的长度,比如 \s{3} 表示匹配三个空格,a[1
windows python调用Stanford nlp tools经验 使用nltk中的自带的类来调用Stanford nlp tools一直报错,具体原因是版本的原因,nltk需要3.0版本,并且nltk3.0只支持os/linux和windowX86。 接下来将Stanford开发的第三方工具包调用Stanford parser! 首先,需要下载 StanfordParser,下载3.6.0 还需要安装第三方工具包Stanford-parser-pytho
最大熵模型 熵\ 假设离散变量X的概率分布是P(X)H(P)=−∑xp(x)logp(x)H(P) = -\sum_{x}p(x)logp(x)最大熵模型定义\ 假设分类模型是条件概率P(Y|X),给定训练数据集T={(x1,y1),(x2,y2),…,(xn,yn)}学习目标就是用最大熵原理选择最好的模型\特征函数f(x,y)关于经验分布P*(X,Y)的期望值为:Ep∗=∑x,yP∗(x,y)f(x
文件的分割(split)与合并(cat) 一、关于 在Linux下,切割和合并文件可以使用split和cat命令来实现。 在window下,下载Git bash也可以使用split和cat 二、文件切割 文件切割模式分为两种:文本文件和二进制模式。 1、文本模式 1)按文件大小切割 split -C 50k log.log splog
word2vec tool 一些命令 Options: Parameters for training: -train Use text data from to train the model -output Use to save the resulting word vectors / word clusters -size Set s
python3+ 和 Python2+的一些区别 1、python3+ dic.items() 返回的是dic_items对象,操作很像set,即不能使用索引,需要转成list形式(list(dic.items)[index]。而python2+ dic.items() 返回的是list。 2、比较函数。Python2+:cmp(a,b)。 python3+:operator.lt(a, b) #a <boperator.le(a
线段树(区间树) 一、简介 线段树,类似区间树,它在各个节点保存一条线段(数组中的一段子数组),主要用于高效解决连续区间的动态查询问题,由于二叉结构的特性,它基本能保持每个操作的复杂度为O(logn)。 线段树的每个节点表示一个区间,子节点则分别表示父节点的左右半区间,例如父亲的区间是[a,b],那么(c=(a+b)/2)左儿子的区间是[a,c],右儿子的区间是[c+1,b]。 二、举例 例1:给一个数组ar
二叉树遍历(非递归) package Tree;import java.util.ArrayList;import java.util.Collections;import java.util.List;import java.util.Stack;class TreeNode { int val; TreeNode left; TreeNode right;
常见的排序算法 package Sort;import java.util.Scanner;import java.util.Stack;;public class TestSort { //冒泡 //插入 //选择 //希尔 //快排 //堆排序 //归并 public void bubbleSort(int[] nums) {