连续邮资问题:
假设国家发行了n种不同面值的邮票,并且规定每张信封上最多只允许贴m张邮票。连续邮资问题要求对于给定的n和m的值,给出邮票面值的最佳设计,在一张信封上可以贴出从邮资1开始,增量为1的最大连续邮资区间。
举例分析:
当n=2,m=3时,如果面值分别为1和4,则可以获得的邮资范围为1~6 加上 8 , 9 , 12
因为8.9.12和1~6并不连续,使用最大能取到的是6
假设国家发行了n种不同面值的邮票,并且规定每张信封上最多只允许贴m张邮票。连续邮资问题要求对于给定的n和m的值,给出邮票面值的最佳设计,在一张信封上可以贴出从邮资1开始,增量为1的最大连续邮资区间。
举例分析:
当n=2,m=3时,如果面值分别为1和4,则可以获得的邮资范围为1~6 加上 8 , 9 , 12
因为8.9.12和1~6并不连续,使用最大能取到的是6
用动态规划的思想取b[i][v],表示至多 i 张邮票,邮资额为 v的逻辑值
b[i][v]能否取到取决于他的任一种前身能否取到,而它的前身就是b[i-1][v-xk],xk是任一小于v 的一张邮票票值
初始化:
b[0][v]=0, (v>0)
b[0][0]=1
#include <iostream>
#include<algorithm>
#include<vector>
#include<fstream>
#include<iomanip>
#include<map>
#include<sstream>
#include<cmath>
#include<stack>

本文探讨了连续邮资问题,这是一种常见的动态规划应用场景。通过实例解释如何使用动态规划方法解决该问题,以找到最少的邮票组合来支付任意金额的邮资。动态规划的概念与递推公式在解决问题中起到关键作用。
最低0.47元/天 解锁文章
2243

被折叠的 条评论
为什么被折叠?



