[Leetcode]174. Dungeon Game @python


The demons had captured the princess (P) and imprisoned her in the bottom-right corner of a dungeon. The dungeon consists of M x N rooms laid out in a 2D grid. Our valiant knight (K) was initially positioned in the top-left room and must fight his way through the dungeon to rescue the princess.

The knight has an initial health point represented by a positive integer. If at any point his health point drops to 0 or below, he dies immediately.

Some of the rooms are guarded by demons, so the knight loses health (negative integers) upon entering these rooms; other rooms are either empty (0’s) or contain magic orbs that increase the knight’s health (positive integers).

In order to reach the princess as quickly as possible, the knight decides to move only rightward or downward in each step.

Write a function to determine the knight’s minimum initial health so that he is able to rescue the princess.

For example, given the dungeon below, the initial health of the knight must be at least 7 if he follows the optimal path RIGHT-> RIGHT -> DOWN -> DOWN.

-2(K) -3 3
-5 -10 1
10 30 -5 (P)


The knight’s health has no upper bound.
Any room can contain threats or power-ups, even the first room the knight enters and the bottom-right room where the princess is imprisoned.


公主被恶魔抓走困在地图右下角的地牢里面。勇敢的骑士要从左上角的地牢进入营救公主。地牢里可能会有坚守的恶魔,于恶魔战斗需要消耗骑士的能量值。地牢里也可能会有宝箱可以为骑士增加能量值。如果骑士在某个地牢里面能量值低于1,则Game over。求为了营救公主,骑士一开始最少需要多少能量值。


采用动态规划的方法解决。dp[i][j] 表示在进入i,j地牢以前骑士最少需要具有多少能量值能够使骑士可以通过剩余的路径。所以我们从右下角的位置开始填充dp。对于每个位置(i,j),骑士可以走(i+1,j)或(i,j+1)两条路径。需要选取消耗能量最少的一条路径。走每条路径需要的能量为max(1,dp[i+1][j]dungeon[i][j])max(1,dp[i][j+1]dungeon[i][j]。如果(i,j)位置有恶魔,则dp[i+1][j]dungeon[i][j]就是选择向下走需要的最少的能量值,但是如果(i,j)位置为宝箱,dp[i+1][j]dungeon[i][j]有可能会小于0,而题目要求骑士的能量值不能小于0,所以需要用max函数。


class Solution(object):
    def calculateMinimumHP(self, dungeon):
        :type dungeon: List[List[int]]
        :rtype: int
        if len(dungeon) == 0:
            return None
        row = len(dungeon)
        col = len(dungeon[0])
        dp = [[0 for _ in range(col)] for _ in range(row) ] 
        dp[row-1][col-1] = max(1,-dungeon[-1][-1] + 1)
        for i in range(row-1,-1,-1):
            for j in range(col - 1,-1,-1):
                down = None
                if i + 1 < row:
                    down = max(1,dp[i+1][j] - dungeon[i][j])
                right = None
                if j + 1 < col:
                    right = max(1,dp[i][j+1] - dungeon[i][j])
                if down and right:
                    dp[i][j] = min(down,right)
                elif down:
                    dp[i][j] = down
                elif right:
                    dp[i][j] = right
        return dp[0][0]