问题描述:
已知序列 a[0]、a[1]、a[2]、…、a[n],要求出连续子序列a[i]、a[i+1]、a[i+2]、…、a[j](0<=i<=j<=n),使其和最大。
算法1:暴力枚举,简单,但是效率不高。由于有三层循环,故时间复杂度为O(n^3)。
max=a[0];//max不能为0
for(i=0;i<=n;i++)
{
for(j=i;j<=n;j++)
{
sum=0;
for(k=i;k<=j;k++)
{
sum+=a[k];
}
if(sum>max)
max=sum;
}
}
算法2:枚举算法优化。设S[i]=a[0]+a[1]+a[2]+…+a[i],则a[i]+a[i+1]+a[i+2]+…+a[j]=S[j]-S[i-1]。主要的时间消耗在二层循环中,故时间复杂度为O(n^2)。
S[0]=a[0];
for(i=1;i<=n;i++)
s[i]=s[i-1]+a[i];
max=a[0];
for(j=0;j<=n;j++)//起点为0的序列
{
if(S[j]>max)
max=S[j];
}
for(i=1;i<=n;i++)
{
for(j=i;j<=n;j++)
{
if(S[j]-S[i-1]>max)
max=S[j]-S[i-1];
}
}
算法3:递归分治
递归分治的一般思路:
(1)将原问题划分成若干子问题。
(2)递归求解子问题。
(3)将子问题合并,求得原问题的解。
最大连续子序列的递归分治算法:
(1)划分问题:将子序列划分成长度大致相等的左右两部分。
(2)求解子问题:分别求解左、右子序列的最优解。
(3)合并问题:最大连续子序列的解只可能有以下三种情况:只在左半部分、只在右半部分、“横跨”左右两大部分(即起点位于左半部分、终点位于右半部分)。在第二步中已经求出了左、右两部分的最优解了,在此,只需求出起点在左半部分、终点在右半部分的最大子序列,并把它和左半部分、右半部分的最大解作比较,求出最大解。
时间复杂度分析:T(n)=2*T(n/2)+O(n),T(1)=1.
2*T(n/2)是因为将原问题分成两个长度大致相同的左右两部分。
O(n)是因为合并时扫描整个序列。
T(n)=2*T(n/2)+n
=4*T(n/4)+2n
=8*T(n/8)+3n
=16*T(n/16)+4n
….
=n*T(1)+nlogn(以2为底)
=O(nlogn)
故时间复杂度为O(nlogn).
//求[x,y]的最大连续子序列和,返回值即为最大连续子序列和
int maxSum(int *A,int x,int y)
{
int mid,lmax,rmax,max,L,R,v;
if(x==y)
return A[x];
mid=(x+y)/2;
lmax=maxSum(A,x,mid);//左半部分的最大解
rmax=maxSum(A,mid+1,y);//右半部分的最大解
max=lmax>rmax?lmax:rmax;
v=0;
L=A[mid];
for(i=mid;i>=0;i--)//从分界点向左开始求最大连续和L
{
v=v+A[i];
if(L<v)
L=v;
}
v=0;R=A[mid+1];
for(i=mid+1;i<=n;i++)//从分界点开始向右求最大连续和R
{
v=v+A[i];
if(R<v)
R=v;
}
if(L+R>max)//起点在左半部分和终点在右半部分的最大连续子序列和只在左半部分和只在右半部分的最大连续和比较。
max=L+R;
}
1万+

被折叠的 条评论
为什么被折叠?



