【Spark】(十二)使用UDTF(User-Defined Table-Generating Functions)

本文介绍了Spark中的UDTF(User-Defined Table-Generating Functions),用于处理一行输出多行的需求。通过实现`GenericUDTF`,包括initialize、process和close方法,详细阐述了UDTF的工作流程。举例展示了UDTF的使用,并提到了注册UDTF的注意事项,如在`process`方法中参数转换,以及在SparkSQL中的使用限制。
摘要由CSDN通过智能技术生成

一、UDTF介绍

UDTF(User-Defined Table-Generating Functions) 用来解决 输入一行输出多行(On-to-many maping) 的需求。

二、使用UDTF

继承org.apache.hadoop.hive.ql.udf.generic.GenericUDTF,实现initialize, process, close三个方法。

  • 1、UDTF首先会调用initialize方法,此方法返回UDTF的返回行的信息(返回个数,类型)。
  • 2、初始化完成后,会调用process方法,真正的处理过程在process函数中,在process中,每一次forward()调用产生一行;如果产生多列可以将多个列的值放在一个数组中,然后将该数组传入到forward()函数。
  • 3、最后close()方法调用,对需要清理的方法进行清理。

案例:
通过实现抽象类org.apache.hadoop.hive.ql.udf.generic.GenericUDTF来自定义UDTF算子

class myUDTF extends GenericUDTF{
   

  //这个方法的作用:1.输入参数校验  2. 输出列定义,可以多于1列,相当于可以生成多行多列数据
  override def initialize(argOIs: Array[ObjectInspector]): StructObjectInspector = {
   
    if (argOIs.length != 1){
   
      throw new UDFArgumentLengthException("有且只有一个参数传入")
    }
    if (argOIs(0).getCategory != ObjectInspector.Category.PRIMITIVE){
   
      throw new UDFArgumentLengthException("参数类型不匹配")
    }

    
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值