【Spark Streaming】(一)Spark Streaming 简单入门

本文介绍了Spark Streaming的基本概念和工作原理,通过一个简单的示例展示了如何从本地7777端口接收文本数据并计算单词计数。文章详细阐述了初始化StreamingContext、DStream的转化和输出操作,以及Spark Streaming的运行架构。强调了微批次处理、Receiver的角色和输出操作的重要性,并提到了配置参数如batch interval的设置。此外,还讨论了流处理引擎的数据接收、存储、处理和输出流程。
摘要由CSDN通过智能技术生成

一、概述

SparkStreaming是流式处理框架,是Spark API的扩展,支持可扩展、高吞吐量、容错的实时数据流处理,实时数据的来源可以是:Kafka, Flume, Twitter, ZeroMQ或者TCP sockets,并且可以使用高级功能的复杂算子来处理流数据。例如:map,reduce,join,window 。最终,处理后的数据可以存放在文件系统,数据库等,方便实时展现。

一个简单的示例

下面以一个简单的例子开始spark streaming的学习之旅!我们会从本机的7777端口源源不断地收到以换行符分隔的文本数据流,并计算单词个数

package cn.kgc.kb09.Spark
import org.apache.spark.streaming.{
   Seconds, StreamingContext}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.ReceiverInputDStream

object SparkStreamDemo1 {
   
  def main(args: Array[String]): Unit = {
   
    // 创建SparkConf
    val conf = new SparkConf().setAppName("SparkStreamDemo1").setMaster("local[*]")

    // 采集周期,指定的3秒为每次采集的时间间隔
    val streamingContext = new StreamingContext(conf,Seconds(3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值