Flink事件时间处理和水印
1、Flink 中的时间语义
在 Flink 的流式处理中,会涉及到时间的不同概念,如下图所示

-
Event Time:是事件创建的时间。它通常由事件中的时间戳描述,例如采集的日志数据中,每一条日志都会记录自己的生成时间,Flink 通过时间戳分配器访问事件时间戳。
-
Ingestion Time:是数据进入 Flink 的时间。
-
Processing Time:是每一个执行基于时间操作的算子的本地系统时间,与机器相关,默认的时间属性就是 Processing Time。
2、EventTime的引入
-
在 Flink 的流式处理中,绝大部分的业务都会使用 eventTime,一般只在eventTime 无法使用时,才会被迫使用 ProcessingTime 或者 IngestionTime。
-
如果要使用 EventTime,那么需要引入 EventTime 的时间属性,引入方式如下所示:
val env = StreamExecutionEnvironment.getExecutionEnvironment
// 从调用时刻开始给 env 创建的每一个 stream 追加时间特征
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
3、Watermark
基本概念
我们知道,流处理从事件产生,到流经 source,再到 operator,中间是有一个过程和时间的,虽然大部分情况下,流到 operator 的数据都是按照事件产生的时间顺序来的,但是也不排除由于网络、分布式等原因,导致乱序的产生,所谓乱序,就是指 Flink 接收到的事件的先后顺序不是严格按照事件的 Event Time 顺序排列的。

那么此时出现一个问题,一旦出现乱序,如果只根据 eventTime 决定 window 的运行,我们不能明确数据是否全部到位,但又不能无限期的等下去,此时必须要有个机制来保证一个特定的时间后,必须触发 window 去进行计算了,这个特别的机制,就是 Watermark。
-
Watermark 是一种衡量 Event Time 进展的机制。
-
Watermark 是用于处理乱序事件的,而正确的处理乱序事件,通常用Watermark 机制结合 window 来实现。
-
数据流中的 Watermark 用于表示 timestamp 小于 Watermark 的数据,都已经到达了,因此,window 的执行也是由 Watermark 触发的。
-
Watermark 可以理解成一个延迟触发机制,我们可以设置 Watermark 的延时时长 t,每次系统会校验已经到达的数据中最大的 maxEventTime,然后认定 eventTime小于 maxEventTime - t 的所有数据都已经到达,如果有窗口的停止时间小于等于maxEventTime – t,那么这个窗口就会关闭然后被触发执行。
-
当一个窗口A被关闭去触发计算逻辑后,紧接着下一个窗口B来了一条属于窗口A(此数据的时间戳在窗口A的时间戳范围内)的数据,一般此数据并不会被归纳为窗口B的数据,会被舍弃。除非是该数据的时间戳为窗口A的停止时间,这个时候该条数据的时间戳会被修改为窗口B的开始时间时间戳去参与窗口B的逻辑计算。
有序流的 Watermarker 如下图所示:(Watermark延迟时间设置为 0)

乱序流的 Watermarker 如下图所示:(Watermark延迟时间设置为 2)

当 Flink 接收到数据时,会按照一定的规则去生成 Watermark,这条 Watermark就等于当前所有到达数据中的 maxEventTime - 延迟时长,也就是说,Watermark 是基于数据携带的时间戳生成的,一旦 Watermark 比当前未触发的窗口的停止时间要晚,那么就会触发相应窗口的执行。由于 event time 是由数据携带的,因此,如果运行过程中无法获取新的数据,那么没有被触发的窗口将永远都不被触发。
上图中,我们设置的允许最大延迟到达时间为 2s,所以时间戳为 7s 的事件对应的 Watermark 是 5s,时间戳为 12s 的事件的 Watermark 是 10s,如果我们的窗口 1 是 1s~5s,窗口 2 是 6s~10s,那么时间戳为 7s 的事件到达时的 Watermarker 恰好触发窗口 1,时间戳为 12s 的事件到达时的 Watermark 恰好触发窗口 2。
Watermark 就是触发前一窗口的“关窗时间”,一旦触发关门那么以当前时刻为准在窗口范围内的所有数据都会收入窗中。
只要没有达到水位那么不管现实中的时间推进了多久都不会触发关窗。
引入Watermark
watermark 的引入很简单,对于乱序数据,最常见的引用方式如下:
dataStream.assignTimestampsAndWatermarks( new
BoundedOutOfOrdernessTimestampExtractor[SensorReading](Time.milliseconds(1000)) {
override def extractTimestamp(element: SensorReading): Long = {
element.timestamp * 1000
}} )
Event Time 的使用一定要指定数据源中的时间戳。否则程序无法知道事件的事件时间是什么(数据源里的数据没有时间戳的话,就只能使用 Processing Time 了)。
我们看到上面的例子中创建了一个看起来有点复杂的类,这个类实现的其实就是分配时间戳的接口。Flink 暴露了 TimestampAssigner 接口供我们实现,使我们可以自定义如何从事件数据中抽取时间戳。
val env = StreamExecutionEnvironment.getExecutionEnvironment
// 从调用时刻开始给 env 创建的每一个 stream 追加时间特性
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)val readings: DataStream[SensorReading] = env
.addSource(new SensorSource) .assignTimestampsAndWatermarks(new MyAssigner)
class MyAssigner extends AssignerWithPeriodicWatermarks[SensorReading]{
var bound = 2000 //waterMark 延迟关窗时间
var maxTs = -

本文详细介绍了Flink中的事件时间处理和Watermark机制。内容包括Flink的时间语义,重点讲解了EventTime的引入以及Watermark的基本概念和实战应用。Watermark作为处理乱序事件的机制,用于衡量Event Time的进展,并通过TimestampAssigner接口实现周期性和间断式的Watermark生成策略。
最低0.47元/天 解锁文章
573

被折叠的 条评论
为什么被折叠?



