Flink
文章平均质量分 91
屡傻不改
这个作者很懒,什么都没留下…
展开
-
【Flink】(四)Flink事件时间处理和水印
Flink事件时间处理和水印1、Flink 中的时间语义在 Flink 的流式处理中,会涉及到时间的不同概念,如下图所示Event Time:是事件创建的时间。它通常由事件中的时间戳描述,例如采集的日志数据中,每一条日志都会记录自己的生成时间,Flink 通过时间戳分配器访问事件时间戳。Ingestion Time:是数据进入 Flink 的时间。Processing Time:是每一个执行基于时间操作的算子的本地系统时间,与机器相关,默认的时间属性就是 Processing Tim原创 2021-01-18 16:38:41 · 1380 阅读 · 0 评论 -
【Flink】(五)Flink ProcessFunction API
Flink ProcessFunction分层APIFlink提供三层API. 每个API在简洁性和表达之间提供不同的权衡,并针对不同的用例1、SQL/Table API (dynamic tables)2、DataStream API(streams, windows)3.ProcessFunction(event,state,time)ProcessFunction不要跟ProcessWindowFunction混为一谈。ProcessFunction是一个低阶的流处理原创 2021-01-18 17:24:00 · 493 阅读 · 0 评论 -
【Flink】(三)Flink Window 窗口机制
Flink Window 窗口机制一、总览Window 是flink处理无限流的核心,Windows将流拆分为有限大小的“桶”,我们可以在其上应用计算。Flink 认为 Batch 是 Streaming 的一个特例,所以 Flink 底层引擎是一个流式引擎,在上面实现了流处理和批处理。而窗口(window)就是从 Streaming 到 Batch 的一个桥梁。Flink 提供了非常完善的窗口机制。在流处理应用中,数据是连续不断的,因此我们不可能等到所有数据都到了才开始处理原创 2021-01-07 14:11:50 · 215 阅读 · 0 评论 -
【Flink】(二)Flink入门(详细教程)
Flink入门(详细教程)和其他所有的计算框架一样,flink也有一些基础的开发步骤以及基础,核心的API,从开发步骤的角度来讲,主要分为四大部分导入flink相关依赖<dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-scala_2.11</artifactId> <version>1.7.2</version><原创 2021-01-05 16:07:47 · 602 阅读 · 0 评论 -
【Flink】(一)深入理解Flink核心技术及原理
一、Flink简介Flink核心是一个流式的数据流执行引擎,其针对数据流的分布式计算提供了数据分布、数据通信以及容错机制等功能。基于流执行引擎,Flink提供了诸多更高抽象层的API以便用户编写分布式任务:1、DataSet API, 对静态数据进行批处理操作,将静态数据抽象成分布式的数据集,用户可以方便地使用Flink提供的各种操作符对分布式数据集进行处理,支持Java、Scala和Python。2、DataStream API,对数据流进行流处理操作,将流式的数据抽象成分布式的数据流,用户原创 2021-01-05 13:42:55 · 1171 阅读 · 0 评论
分享