ZIP文件格式详解(一)——文件数据格式

ZIP文件格式详解(一)——文件数据格式

----------------------------------------------------------------------------------

文档说明

ZIP 格式的压缩文件是我们常用的压缩格式之一,他以其通用性、压缩比高而在全球范围内有很多的用户,本文简单介绍 ZIP 文件格式和算法。本文主要参照 http://www.pkware.com/ 提供的 appnote.txt 文件,你可以从http://www.pkware.com/download.html 下载 appnote.zip 得到这个文件。

 

作者:昏睡终日(Seread@163.com

2002-10-28 16:32:25

 

本文仅作为技术参考资料,我尽力的保证文档的内容同原始技术文档在结构和描述上的一致,若有不当的地方请见谅。

本文档的作者不为使用本文档信息所造成的任何损失负责。

 

----------------------------------------------------------------------------------

 

 

一个 ZIP 文件的普通格式

----------------------

    一个 ZIP 文件由三个部分组成:
        

        压缩源文件数据区+压缩源文件目录区+压缩源文件目录结束标志

 

 

    1、压缩源文件数据区

    在这个数据区中每一个压缩的源文件/目录都是一条记录,记录的格式如下:
      

       [文件头+ 文件数据 + 数据描述符]
 
       a、文件头结构

         组成                     长度
      文件头标记                  4 bytes  (0x04034b50)
      解压文件所需 pkware 版本    2 bytes
      全局方式位标记              2 bytes
    压缩方式                    2 bytes
    最后修改文件时间             2 bytes
    最后修改文件日期             2 bytes
    CRC-32校验                  4 bytes
    压缩后尺寸                  4 bytes
    未压缩尺寸                  4 bytes
    文件名长度                  2 bytes

      扩展记录长度                2 bytes
    文件名                     (不定长度)
    扩展字段                   (不定长度)

 

        b、文件数据

 

       

        c、数据描述符

    组成     长度
    CRC-32校验                  4 bytes
    压缩后尺寸                   4 bytes
    未压缩尺寸                   4 bytes

      这个数据描述符只在全局方式位标记的第3位设为1时才存在(见后详解),紧接在压缩数据的最后一个字节后。这个数据描述符只用在不能对输出的 ZIP 文件进行检索时使用。例如:在一个不能检索的驱动器(如:磁带机上)上的 ZIP 文件中。如果是磁盘上的ZIP文件一般没有这个数据描述符。

 

 

     2、压缩源文件目录区

     在这个数据区中每一条纪录对应在压缩源文件数据区中的一条数据

 

      组成                            长度

      目录中文件文件头标记             4 bytes  (0x02014b50)

      压缩使用的 pkware 版本          2 bytes

      解压文件所需 pkware 版本         2 bytes

      全局方式位标记                   2 bytes

      压缩方式                        2 bytes

      最后修改文件时间                 2 bytes

      最后修改文件日期                 2 bytes

      CRC-32校验                 4 bytes

      压缩后尺寸                      4 bytes

      未压缩尺寸                      4 bytes

      文件名长度                      2 bytes

      扩展字段长度                    2 bytes

      文件注释长度                    2 bytes

      磁盘开始号                      2 bytes

      内部文件属性                    2 bytes

      外部文件属性                    4 bytes

        局部头部偏移量                  4 bytes

      文件名                       (不定长度)

      扩展字段                     (不定长度)

        文件注释                     (不定长度)

 

 

    3、压缩源文件目录结束标志

 

       组成                          长度

        目录结束标记                    4 bytes  (0x02014b50)

        当前磁盘编号                    2 bytes

        目录区开始磁盘编号              2 bytes

      本磁盘上纪录总数                 2 bytes

      目录区中纪录总数                 2 bytes

      目录区尺寸大小                   4 bytes

      目录区对第一张磁盘的偏移量        4 bytes

      ZIP 文件注释长度                 2 bytes

      ZIP 文件注释                   (不定长度)

 

      
 

相关文章
对该文的评论
CSDN 网友 ( 2004-06-23)
只有格式,没有算法吗?
__________________________
1. Compression algorithm (deflate)

The deflation algorithm used by gzip (also zip and zlib) is a variation of
LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
the input data.  The second occurrence of a string is replaced by a
pointer to the previous string, in the form of a pair (distance,
length).  Distances are limited to 32K bytes, and lengths are limited
to 258 bytes. When a string does not occur anywhere in the previous
32K bytes, it is emitted as a sequence of literal bytes.  (In this
description, `string' must be taken as an arbitrary sequence of bytes,
and is not restricted to printable characters.)

Literals or match lengths are compressed with one Huffman tree, and
match distances are compressed with another tree. The trees are stored
in a compact form at the start of each block. The blocks can have any
size (except that the compressed data for one block must fit in
available memory). A block is terminated when deflate() determines that
it would be useful to start another block with fresh trees. (This is
somewhat similar to the behavior of LZW-based _compress_.)

Duplicated strings are found using a hash table. All input strings of
length 3 are inserted in the hash table. A hash index is computed for
the next 3 bytes. If the hash chain for this index is not empty, all
strings in the chain are compared with the current input string, and
the longest match is selected.

The hash chains are searched starting with the most recent strings, to
favor small distances and thus take advantage of the Huffman encoding.
The hash chains are singly linked. There are no deletions from the
hash chains, the algorithm simply discards matches that are too old.

To avoid a worst-case situation, very long hash chains are arbitrarily
truncated at a certain length, determined by a runtime option (level
parameter of deflateInit). So deflate() does not always find the longest
possible match but generally finds a match which is long enough.

deflate() also defers the selection of matches with a lazy evaluation
mechanism. After a match of length N has been found, deflate() searches for
a longer match at the next input byte. If a longer match is found, the
previous match is truncated to a length of one (thus producing a single
literal byte) and the process of lazy evaluation begins again. Otherwise,
the original match is kept, and the next match search is attempted only N
steps later.

The lazy match evaluation is also subject to a runtime parameter. If
the current match is long enough, deflate() reduces the search for a longer
match, thus speeding up the whole process. If compression ratio is more
important than speed, deflate() attempts a complete second search even if
the first match is already long enough.

The lazy match evaluation is not performed for the fastest compression
modes (level parameter 1 to 3). For these fast modes, new strings
are inserted in the hash table only when no match was found, or
when the match is not too long. This degrades the compression ratio
but saves time since there are both fewer insertions and fewer searches.


2. Decompression algorithm (inflate)

2.1 Introduction

The key question is how to represent a Huffman code (or any prefix code) so
that you can decode fast.  The most important characteristic is that shorter
codes are much more common than longer codes, so pay attention to decoding the
short codes fast, and let the long codes take longer to decode.

inflate() sets up a first level table that covers some number of bits of
input less than the length of longest code.  It gets that many bits from the
stream, and looks it up in the table.  The table will tell if the next
code is that many bits or less and how many, and if it is, it will tell
the value, else it will point to the next level table for which inflate()
grabs more bits and tries to decode a longer code.

How many bits to make the first lookup is a tradeoff between the time it
takes to decode and the time it takes to build the table.  If building the
table took no time (and if you had infinite memory), then there would only
be a first level table to cover all the way to the longest code.  However,
building the table ends up taking a lot longer for more bits since short
codes are replicated many times in such a table.  What inflate() does is
simply to make the number of bits in the first table a variable, and  then
to set that variable for the maximum speed.

For inflate, which has 286 possible codes for the literal/length tree, the size
of the first table is nine bits.  Also the distance trees have 30 possible
values, and the size of the first table is six bits.  Note that for each of
those cases, the table ended up one bit longer than the ``average'' code
length, i.e. the code length of an approximately flat code which would be a
little more than eight bits for 286 symbols and a little less than five bits
for 30 symbols.


2.2 More details on the inflate table lookup

Ok, you want to know what this cleverly obfuscated inflate tree actually
looks like.  You are correct that it's not a Huffman tree.  It is simply a
lookup table for the first, let's say, nine bits of a Huffman symbol.  The
symbol could be as short as one bit or as long as 15 bits.  If a particular
symbol is shorter than nine bits, then that symbol's translation is duplicated
in all those entries that start with that symbol's bits.  For example, if the
symbol is four bits, then it's duplicated 32 times in a nine-bit table.  If a
symbol is nine bits long, it appears in the table once.

If the symbol is longer than nine bits, then that entry in the table points
to another similar table for the remaining bits.  Again, there are duplicated
entries as needed.  The idea is that most of the time the symbol will be short
and there will only be one table look up.  (That's whole idea behind data
compression in the first place.)  For the less frequent long symbols, there
will be two lookups.  If you had a compression method with really long
symbols, you could have as many levels of lookups as is efficient.  For
inflate, two is enough.

So a table entry either points to another table (in which case nine bits in
the above example are gobbled), or it contains the translation for the symbol
and the number of bits to gobble.  Then you start again with the next
ungobbled bit.

You may wonder: why not just have one lookup table for how ever many bits the
longest symbol is?  The reason is that if you do that, you end up spending
more time filling in duplicate symbol entries than you do actually decoding.
At least for deflate's output that generates new trees every several 10's of
kbytes.  You can imagine that filling in a 2^15 entry table for a 15-bit code
would take too long if you're only decoding several thousand symbols.  At the
other extreme, you could make a new table for every bit in the code.  In fact,
that's essentially a Huffman tree.  But then you spend two much time
traversing the tree while decoding, even for short symbols.

So the number of bits for the first lookup table is a trade of the time to
fill out the table vs. the time spent looking at the second level and above of
the table.

Here is an example, scaled down:

The code being decoded, with 10 symbols, from 1 to 6 bits long:

A: 0
B: 10
C: 1100
D: 11010
E: 11011
F: 11100
G: 11101
H: 11110
I: 111110
J: 111111

Let's make the first table three bits long (eight entries):

000: A,1
001: A,1
010: A,1
011: A,1
100: B,2
101: B,2
110: -> table X (gobble 3 bits)
111: -> table Y (gobble 3 bits)

Each entry is what the bits decode as and how many bits that is, i.e. how
many bits to gobble.  Or the entry points to another table, with the number of
bits to gobble implicit in the size of the table.

Table X is two bits long since the longest code starting with 110 is five bits
long:

00: C,1
01: C,1
10: D,2
11: E,2

Table Y is three bits long since the longest code starting with 111 is six
bits long:

000: F,2
001: F,2
010: G,2
011: G,2
100: H,2
101: H,2
110: I,3
111: J,3

So what we have here are three tables with a total of 20 entries that had to
be constructed.  That's compared to 64 entries for a single table.  Or
compared to 16 entries for a Huffman tree (six two entry tables and one four
entry table).  Assuming that the code ideally represents the probability of
the symbols, it takes on the average 1.25 lookups per symbol.  That's compared
to one lookup for the single table, or 1.66 lookups per symbol for the
Huffman tree.

There, I think that gives you a picture of what's going on.  For inflate, the
meaning of a particular symbol is often more than just a letter.  It can be a
byte (a "literal"), or it can be either a length or a distance which
indicates a base value and a number of bits to fetch after the code that is
added to the base value.  Or it might be the special end-of-block code.  The
data structures created in inftrees.c try to encode all that information
compactly in the tables.


Jean-loup Gailly        Mark Adler
jloup@gzip.org          madler@alumni.caltech.edu


References:

[LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data
Compression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3,
pp. 337-343.

``DEFLATE Compressed Data Format Specification'' available in
http://www.ietf.org/rfc/rfc1951.txt
本书讨论数据结构和算法分析。数据结构主要研究组织大量数据的方法,而算法分析则是对算法运行时间的评估。随着计算机的速度越来越快,对于能够处理大量输入数据的程序的需求变得日益急切。可是,由于在输入量很大的时候,程序的低效率现象变得非常明显,因此这又要求对效率问题给予更仔细的关注。通过在实际编程之前对算法的分析,学生可以决定一个特定的解法是否可行。例如,读者在本书中将读到一些特定的问题并看到精心的实现方法是如何把对大量数据的时间限制从16年减至不到1秒的。因此,若无运行时间的阐释,就不会有算法和数据结构的提出。   本书是国外数据结构与算法分析方在的标准教材,介绍了数据结构(大量数据的组织方法)以及算法分析(算法运行时间的估算)。本书的编写目标是同时廛授好的程序设计和算法分析技巧,使读者可以开发出具有**效率的程序。 本书可作为高级数据结构课程或研究生一年级算法分析课程的教材,使用本书需具有一些中级程序设计知识,还需要离散数学的一些背景知识。   随着速度的不断提高和存储容量的持续增长,计算机的功能日益强大,从而处理数据和解决问题的规模和复杂程度与日俱增。这不仅带来了需要认真研究的新课题,而且突出了原有数据结构和算法效率低下的缺点。程序的效率问题不是由于计算机功能的强大而受到冷落,相反地,倒是被人们提到前所未有的重视程度,因为大型问题的解决所涉及到的大容量存储和高速度运算容不得我们对效率有丝毫的忽视。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值