千天夜
码龄5年
关注
提问 私信
  • 博客:89,622
    动态:671
    视频:2
    90,295
    总访问量
  • 85
    原创
  • 16,612
    排名
  • 927
    粉丝
  • 63
    铁粉
  • 学习成就

个人简介:一个热爱算法的码农

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2019-10-15
博客简介:

qiantianye的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    5
    当前总分
    927
    当月
    153
个人成就
  • 获得1,108次点赞
  • 内容获得31次评论
  • 获得1,125次收藏
  • 代码片获得2,001次分享
创作历程
  • 63篇
    2024年
  • 22篇
    2023年
成就勋章
TA的专栏
  • 算法
    35篇
  • EasyOCR
    1篇
  • 语言大模型
    11篇
  • 知识积累
    39篇
  • 机器学习
    22篇
  • 汽车软件开发
    5篇
  • 实用小工具
    2篇
  • 架构师转型之路
    1篇
  • Android Studio
    1篇
  • 错误管理
    5篇
  • YOLO模型相关
    19篇
兴趣领域 设置
  • Python
    pythonscikit-learn
  • 数据结构与算法
    算法
  • 人工智能
    数据挖掘计算机视觉机器学习人工智能深度学习神经网络自然语言处理sklearncnnword2vec目标跟踪语言模型视觉检测图像处理聚类集成学习迁移学习分类回归YOLO
求关注、评论、点赞、收藏~
宝藏博主,快点关注,速点关注鸭!!!!
创作活动更多

HarmonyOS开发者社区有奖征文来啦!

用文字记录下您与HarmonyOS的故事。参与活动,还有机会赢奖,快来加入我们吧!

0人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 收藏
搜TA的内容
搜索 取消

YOLO系列基础(九)YOLOv2论文及原理详解(上)

随着YOLOv11版本的发布,YOLO算法在视觉检测领域独领风骚,本系列旨在从小白出发,给大家讲解清楚视觉检测算法的前世今生,并讲清楚YOLOv11版本算法的所有模块功能!在YOLO(You Only Look Once)系列算法的演进中,YOLOv1作为开山之作,奠定了实时目标检测的基础框架。但是YOLOv1仍然存在诸多缺陷,且同期的其他检测算法也在蒸蒸日上抢夺最强检测算法的宝座,本文从YOLOv1的缺陷出发,详解YOLOv2的原理和改进措施。
原创
发布博客 昨天 08:30 ·
818 阅读 ·
15 点赞 ·
0 评论 ·
13 收藏

YOLO系列基础(八)从检测框坐标值直接预测到锚框偏移量

从YOLOv1直接预测检测框坐标到Fast R-CNN引入锚框,目标检测算法在精度和泛化能力上取得了显著进步。锚框的引入不仅解决了YOLOv1在边界框预测上的局限性,也为后续的目标检测算法(如YOLOv2及以后版本)提供了重要的启示。在YOLOv2及后续版本中,锚框的概念得到了进一步的优化和应用,使得YOLO系列算法在保持实时性的同时,不断提升检测精度和泛化能力。
原创
发布博客 2024.11.20 ·
736 阅读 ·
33 点赞 ·
0 评论 ·
14 收藏

YOLO系列基础(七)从数据增强到图像线性变换

过拟合(Overfitting)是机器学习中的一个常见问题,指的是模型在训练数据上表现得过于出色,以至于它开始捕捉并学习训练数据中的噪声和随机波动,而不是学习数据的潜在规律或模式。这种情况发生时,模型在训练集上的性能(如准确率、召回率等指标)通常非常高,但在未见过的数据(如测试集或实际应用中的数据)上的性能却显著下降。过拟合的模型往往过于复杂,它们包含了大量的参数和细节,这些参数和细节对于训练数据是有效的,但对于新的、类似的数据则不再有效。
原创
发布博客 2024.11.15 ·
767 阅读 ·
21 点赞 ·
0 评论 ·
11 收藏

激活函数解析:神经网络背后的“驱动力”

在神经网络中,每个神经元都会接收来自前一层神经元的输入信号,这些输入信号经过加权和求和后,需要通过激活函数进行处理。激活函数的作用是决定神经元是否应该被激活,从而影响输出值。简单来说,激活函数决定了一个神经元对其输入信号的反应程度。激活函数是神经网络中不可或缺的组成部分,它们让网络能够学习复杂的非线性关系。不同的激活函数具有不同的特点,适用于不同的任务和数据集。在实际应用中,ReLU 和其变种(如 Leaky ReLU)因其简单高效而成为深度学习中最常用的激活函数。
原创
发布博客 2024.11.13 ·
916 阅读 ·
11 点赞 ·
0 评论 ·
20 收藏

YOLO系列基础(六)YOLOv1论文原理详解,清晰明了!

经过前面几个栏目的学习与掌握,我们已经具备理解和掌握YOLOv1的基本能力。今天,我们来精讲YOLOv1的原理!网络结构、算法流程、损失函数详解!
原创
发布博客 2024.11.13 ·
1696 阅读 ·
36 点赞 ·
0 评论 ·
10 收藏

YOLO系列基础(五)从神经元共适应性到模型Dropout层

在神经网络中,每个神经元通常被设计为独立的特征检测器。然而,在实际训练过程中,可能会出现两个或多个神经元开始检测相同或高度相似的特征。这种现象被称为共适应性(coadaptation)。共适应性意味着神经网络并没有充分利用其全部的计算资源,而是浪费资源来计算激活冗余的神经元。用人话说就是有神经元是完全没用的东西,因为和其他神经元高度相似。
原创
发布博客 2024.11.12 ·
606 阅读 ·
17 点赞 ·
0 评论 ·
25 收藏

YOLO系列基础(四)从归一化层(BN层)到CBS模块

在我们实际讲解BN层操作之前,我们需要对BatchSize进行一个说明,BatchSize就是模型在单次训练的时候同时训练的图片数量,batchsize = 2 意味着单次训练2张图片,就这么简单。BacthSize主要是为了加速模型拟合、减少模型过拟合、缓解loss跳变引入的。并非本文重点,我们下篇再详解此部分。
原创
发布博客 2024.11.12 ·
761 阅读 ·
15 点赞 ·
0 评论 ·
23 收藏

LangChain学习与开发实战合集

从新手出发,进行大模型应用开发入门。适合新手小白的大模型学习之路!
原创
发布博客 2024.11.11 ·
855 阅读 ·
25 点赞 ·
0 评论 ·
12 收藏

YOLO系列基础(三)从ResNet残差网络到C3层

每过一层,神经网络就会对数据进行进一步的抽象,神经网络的深度越深,网络就能对数据的更深层特征进行提取和识别。但是有一个关键的现象是,每一次的抽象都不可避免的会损失数据,无论是卷积、池化都一样,这就导致了这个深层特征是存在上限的,进行过多层级的特征提取,提取的特征可能会过于抽象以至于毫无意义。此外,多增加的一个Conv层大大提高了模型的拟合速度,因为不管怎么说,好歹是做了一次特征提取的操作。博主想要表达的是,仅仅是单纯的神经网络层级过长,就足以导致模型效果的急剧下降。可惜的是,似乎并不能如此武断的下定结论。
原创
发布博客 2024.11.11 ·
987 阅读 ·
33 点赞 ·
0 评论 ·
29 收藏

YOLO系列基础(二)Bottleneck瓶颈层原理详解

bottleneck层最初是在ResNet网络中初次提出,通过降低计算量使得神经网络网络深度可以进一步增加。下图为瓶颈层的结构图左侧是没有瓶颈层的残差网络,对于残差网络我们放置下一篇介绍,此处不用管这个看似很NB的名称。右侧则是称为有瓶颈层的残差网络。有啥区别呢?左侧仅仅是做了一层常规的3*3卷积核的卷积层,激活之后再次通过另外一次3*3卷积核的卷积层。右侧则是通过了一层1*1的卷积层、激活之后再通过3*3的卷积层激活之后再一次通过1*1的卷积层。我为什么要复述一遍……。
原创
发布博客 2024.11.08 ·
803 阅读 ·
19 点赞 ·
0 评论 ·
17 收藏

YOLO系列基础(一)卷积神经网络原理详解与基础层级结构说明

卷积神经网络(CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一,在自然语言处理和图像领域中有广泛的应用。本文将详细讲解卷积神经网络的原理,并重点探讨卷积核及其有效性。
原创
发布博客 2024.11.08 ·
1167 阅读 ·
20 点赞 ·
0 评论 ·
26 收藏

YOLOv8相较于YOLOv5有哪些改进?

综上所述,YOLOv8相比YOLOv5在算法上进行了多项改进,这些改进使得YOLOv8在目标检测任务中表现出更高的性能和准确性。
原创
发布博客 2024.11.07 ·
606 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

Alphago的原理详解

AlphaGo是谷歌DeepMind团队开发的围棋AI,是世界上第一个打败人类围棋冠军的AI。其原理主要基于深度学习和强化学习,并结合了蒙特卡洛树搜索算法。
原创
发布博客 2024.11.05 ·
469 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

多信号多信号范围的遍历策略——N进位器策略

最近在进行开发的时候,遇到一个问题:不同的功能,对应的触发信号不同,不同的信号对应的信号范围也不同。如何在功能测试的时候测试到所有的信号呢?例如:功能A,受信号S1S2控制,S1信号值范围为[0,4]S2值范围为[0,255]功能B,受信号S3控制,S3信号值范围为[0,4]功能C,受信号S1……Sn控制,S1信号值范围为[0,4]……Sn值范围为[0,n]
原创
发布博客 2024.10.24 ·
281 阅读 ·
9 点赞 ·
0 评论 ·
6 收藏

YOLO系列之多阶段训练策略(解决识别不平衡问题)

在进行识别模型训练的时候,往往后期在实际运行中发现一些类别图像识别不佳的情况,此时需要做数据的重新收集与标注。那么此时的训练策略是什么呢?因为若是把数据集整合起来统一训练,就会导致其他没有问题的类别在多次重复训练中发生过拟合现象,而且对于需要更多训练的类别也会因为loss太低而得不到好的训练效果。经常出现这个类别修好,别的类别又出现效果不佳的现象。
原创
发布博客 2024.10.17 ·
391 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

EasyOCR(一)超强超便捷的OCR开源算法介绍与文本检测模型CRAFT微调方法

EasyOCR——超强超便捷的OCR开源算法介绍与文本检测模型CRAFT微调方法
原创
发布博客 2024.10.16 ·
1281 阅读 ·
24 点赞 ·
0 评论 ·
23 收藏

YOLO系列——数据采集策略对模型效果的影响分析

最近在开发实践中,需要用到YOLO强大的图片检测能力,然而总是会遇到一些待检测物体没有成功检测出来的情况。发现并非过拟合现象,本次的情况实际是本次的数据采集没有考虑光圈和光照条件、没有考虑多样化背景干扰。导致模型在不同光照条件下效果差异明显,在不同背景下出现误识别背景的情况。
原创
发布博客 2024.10.15 ·
568 阅读 ·
6 点赞 ·
0 评论 ·
10 收藏

多线程紧密循环带来的子线程阻塞问题----问题积累

最近在开发实践中,遇到一个问题。即:明明采用了多线程编程的方式,但是子线程总是是莫名其妙的阻塞一段时间,由此开始了大约1小时的debug……
原创
发布博客 2024.10.11 ·
432 阅读 ·
7 点赞 ·
0 评论 ·
7 收藏

Qt开发中多线程并发QThread子循环需要刷新主循环如何实现?

针对Qthread中需要刷新主循环UI的场景进行设计
原创
发布博客 2024.09.23 ·
800 阅读 ·
7 点赞 ·
0 评论 ·
12 收藏

python本地进程通讯----共享内存变量

最近在开发实践中,接触到了需要多进程开发的场景。。对于多进程开发来说,每一个进程都占据一块独立的虚拟内存空间,想要在多进程之间交互难道只能选择管道(PIPE)、套接字(sokect)、远程过程调用(RPC)这种麻烦的东西吗?实际上在本地进行多进程开发的时候,只要本进程处于你的系统之下,你可以在自己的父进程中设定共享内存区域,使得子进程可以访问该共享内存变量。
原创
发布博客 2024.09.18 ·
1093 阅读 ·
9 点赞 ·
0 评论 ·
21 收藏
加载更多