【hdu】口算训练/二分/质因数分解

Problem Description

小Q非常喜欢数学,但是他的口算能力非常弱。因此他找到了小T,给了小T一个长度为n的正整数序列a1,a2,…,an,要求小T抛出m个问题以训练他的口算能力。

每个问题给出三个正整数l,r,d,小Q需要通过口算快速判断al×al+1×…×ar−1×ar是不是d的倍数。

小Q迅速地回答了出来,但是小T并不知道正确答案是什么,请写一个程序帮助小T计算这些问题的正确答案。

Input

第一行包含一个正整数T(1≤T≤10),表示测试数据的组数。

每组数据第一行包含两个正整数n,m(1≤n,m≤100000),分别表示序列长度以及问题个数。

第二行包含n个正整数a1,a2,…,an(1≤ai≤100000),表示序列中的每个数。

接下来m行,每行三个正整数l,r,d(1≤l≤r≤n,1≤d≤100000),表示每个问题。

Output

对于每个问题输出一行,若是倍数,输出Yes,否则输出No。

Sample Input
1
5 4
6 4 7 2 5
1 2 24
1 3 18
2 5 17
3 5 35

Sample Output
Yes
No
No
Yes

Source
"字节跳动杯"2018中国大学生程序设计竞赛-女生专场

【题解】:
1.某个数x能被y整除,就是将两个数进行质因数分解,然后比较分解出每个质因数的个数,如果x的全部都小于等于y的,那么x就能被y整除。
2.这里的思路也是类似,把给出的一列数字逐个质因数分解,分解结果用vector< int > f[]来存,f【i】就表示能分解出质因数i的数有哪些。
3.因为质因数的数组,是根据输入逐个输入的,所以存储结果必然是有顺序的,所以查找l,r中有多少这个质因数就完全可以用二分法,这里用的是stl里面的lower_bound 和 upper_bound ,然后比较个数
4.注意:分解质因数的步骤除了枚举之外,还要单独判断是否已经被分解成为1了
5.注意存储质因数的数组要初始化

代码

#include <bits/stdc++.h>
using namespace std;
const int maxn=100005;
vector<int> f[maxn];//存储分解的质因数
void fj(int id,int x)
{
    for(int i=2;i*i<=x;i++)
    {
        while(x%i==0)
        {
            f[i].push_back(id);
            x=x/i;
        }
    }
    if(x>1)//注意特判
        f[x].push_back(id);
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        for(int i=0;i<maxn;i++)
        {
            f[i].clear();
        }
        int n,m;
        scanf("%d%d",&n,&m);
        for(int i=0;i<n;i++)
        {
            int a;
            scanf("%d",&a);
            fj(i,a);
        }
        for(int i=0;i<m;i++)
        {
            int l,r,d;
            scanf("%d%d%d",&l,&r,&d);
            l--;
            r--;

            int flg=0;
            for(int j=2;j*j<=d;j++)
            {
                 int cnt=0;
                while(d%j==0)
                {
                    cnt++;
                    d=d/j;
                }
                if(cnt)
                {
                    int pos=upper_bound(f[j].begin(),f[j].end(),r)-lower_bound(f[j].begin(),f[j].end(),l);
                    if(cnt>pos)
                    {
                        flg=1;
                        break;
                    }
                }
            }
            if(d>1)
            {
                int pos=upper_bound(f[d].begin(),f[d].end(),r)-lower_bound(f[d].begin(),f[d].end(),l);//二分法
                if(pos==0)
                    flg=1;
            }
            if(flg==1)
                printf("No\n");
            else
                printf("Yes\n");
        }

    }
    return 0;

}

©️2020 CSDN 皮肤主题: 像素格子 设计师:CSDN官方博客 返回首页