贝叶斯分类在邮件分类

贝叶斯过滤算法的基本步骤
  主要有以下7个步骤:   1. 收集大量的 垃圾邮件和非垃圾邮件,建立垃圾邮件集和非垃圾邮件集。   2. 提取邮件主题和邮件体中的独立字符串,例如 ABC32,¥234等作为TOKEN串并统计提取出的TOKEN串出现的次数即字频。按照上述的方法分别处理垃圾邮件集和非垃圾邮件集中的所有邮件。   3. 每一个邮件集对应一个 哈希表hashtable_good对应非垃圾邮件集而hashtable_bad对应垃圾邮件集。表中存储TOKEN串到字频的映射关系。   4. 计算每个哈希表中TOKEN串出现的概率P=(某TOKEN串的字频)/(对应哈希表的长度)。   5. 综合考虑hashtable_good和hashtable_bad,推断出当新来的邮件中出现某个TOKEN串时,该新邮件为垃圾邮件的概率。数学表达式为:   A 事件 ---- 邮件为垃圾邮件;   t1,t2 …….tn 代表 TOKEN 串   则 P ( A|ti )表示在邮件中出现 TOKEN 串 ti 时,该邮件为垃圾邮件的概率。   设   P1 ( ti ) = ( ti 在 hashtable_good 中的值)   P2 ( ti ) = ( ti 在 hashtable_ bad 中的值)   则 P ( A|ti ) =P2 ( ti ) /[ ( P1 ( ti ) +P2 ( ti ) ] ;   6. 建立新的哈希表hashtable_probability存储TOKEN串ti到P(A|ti)的映射   7. 至此,垃圾邮件集和非垃圾邮件集的学习过程结束。根据建立的哈希表 hashtable_probability可以估计一封新到的邮件为垃圾邮件的可能性。   当新到一封邮件时,按照步骤2,生成TOKEN串。查询hashtable_probability得到该TOKEN 串的键值。   假设由该邮件共得到N个TOKEN 串,t1,t2…….tn,hashtable_probability中对应的值为 P1 , P2 , ……PN , P(A|t1 ,t2, t3……tn) 表示在邮件中同时出现多个TOKEN串t1,t2……tn时,该邮件为垃圾邮件的概率。   由复合概率公式可得   P(A|t1 ,t2, t3……tn)=(P1*P2*……PN)/[P1*P2*……PN+(1-P1)*(1-P2)*……(1-PN)]   当 P(A|t1 ,t2, t3……tn) 超过预定阈值时,就可以判断邮件为垃圾邮件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值