图像滤波器系列(2):保边平滑滤波器Edge-Preserving Noise Reduction

本文介绍了保边平滑滤波器在图像处理中的应用,包括eliminate_min_max、sigma_image和anisotropic_diffusion算子。eliminate_min_max通过比较中心像素与邻域像素来去除噪声,保留边缘;sigma_image利用邻域内灰度值相近的像素进行平滑,减小边缘模糊;anisotropic_diffusion基于偏微分方程,根据图像梯度进行扩散,防止边缘模糊。这些方法在保持图像边缘清晰的同时进行噪声减少。
摘要由CSDN通过智能技术生成

注意事项

1、边缘位置可能移动
2、假设噪声分布于图像数据无关
3、最好不好用于高精度测量问题的预处理

算子

保边滤波都是非线性滤波,以halcon算子来进行介绍

eliminate_min_max

基本原理 :中心像素比邻域像素最大值还大的,则用一些规则(比如均值)替换;比邻域最小值还小的,替换,达到去噪;
而保边的实现是因为:如果是边的话,邻域里至少还有一个像素也是比较大或比较小,与中心像素具有可比性,不会被替换和删除;

sigma_image

基本操作 :同样是首先确定一个邻域,但中心像素并不会用所有邻域像素进行平滑,而是对每个邻域像素进行判断,如果此灰度值与中心灰度值的差在0~sigma范围内,作为候选像素,当遍历完所有邻域像素后,得到邻域内所有候选像素(<=邻域像素数),然后求平均。
保边原理 : 由于用来计算均值的像素都是与中心像素差异较小的像素,也就是说统计学里面的标准差小,因此平滑后的像素(均值)与原中心像素偏差小。 换言之,用来平滑的像素与原像素差异不大,边缘上某点的平滑就是用边缘其他像素来平滑。

anisotropic_diffusion

非线性扩散滤波 / 各向异性扩散滤波
起源:偏微分方程在图像处理中的应用。图像与偏微分方程的联系:尺度空间与热传导方程 。
尺度空间就是图像与不同尺度的高斯函数进行卷积的,而此过程得到的结果等价于各向同性的热传导方程的解。 随着卷积核尺度增大 , 光滑程度越大。 由于各向同性热传导方程中系数为常数,图像按不同尺度参数进行平 滑 时 , 任何像素点的任意方向的扩散速度都相同, 这必然造成图像边缘模糊、细节丢失等现象。 1990,Perona和Malik提出PM扩散模型。
保边原理:根据图像梯度,在接近边缘的位置(梯度大&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>