排序:
默认
按更新时间
按访问量

深度学习、机器学习方面的学术论文的网站、微信公众号等

学术论文搜索网站:http://arxitics.com 国内访问tensorflow官网技巧:host文件下添加  64.233.188.121 www.tensorflow.org Anaconda packages for Linux x86_64 (64-bit):https://r...

2017-02-25 14:06:19

阅读数:623

评论数:0

生成对抗网络(GAN)的理论与应用完整入门介绍

原文地址:http://blog.csdn.net/blood0604/article/details/73635586?locationNum=1&fps=1 本文包含以下内容: 1.为什么生成模型值得研究 2.生成模型的分类 3.GAN相对于其他生成模型相比有什...

2017-12-22 17:27:49

阅读数:831

评论数:0

[ResNet]系列 SENet

论文详解链接:https://segmentfault.com/a/1190000011353862 论文代码链接:https://github.com/hujie-frank/SENet

2017-12-08 17:01:10

阅读数:2532

评论数:0

VAE背后的哲学思想及数学原理

作者:李乐——CSDN AI专栏作家 引言 短短三年时间,变分编码器VAE(Variational Auto-encoder)同GAN一样,成为无监督复杂概率分布学习的最流行的方法。VAE之所以流行,是因为它建立在标准函数逼近单元,即神经网络,此外它可以利用随机梯度下降进行优化。本文将解释重...

2017-12-05 21:42:30

阅读数:110

评论数:0

如何评价刘同新书《我在未来等你》?

作者:费小丑 链接:https://www.zhihu.com/question/66014775/answer/238179895 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 这是一个不太容易回答的问题。 一方面,是因为评价一个同时...

2017-12-01 14:52:53

阅读数:1202

评论数:0

DeepMind提出快速调参新算法PBT,适用GAN训练(附论文)

【新智元导读】DeepMind在最新的一篇论文 Population Based Training of Neural Networks中,提出了一种新的训练神经网络的方法PBT,这是一种异步优化算法,它同时训练和优化一个群体的网络,从而快速地为任务选择最佳的超参数集合和模型。最重要的是,这种...

2017-12-01 10:48:42

阅读数:320

评论数:2

【直观梳理深度学习关键概念】优化算法、调参基本思路、正则化方式等

【作者简介】张皓:南京大学计算机系机器学习与数据挖掘所(LAMDA)硕士,研究方向为计算机视觉和机器学习,特别是视觉识别和深度学习。个人主页http://lamda.nju.edu.cn/zhangh/ 本文转载于新智元公众号,如有侵权,还望告知! 【新智元导读】深度学习论文众多,而理解的...

2017-12-01 10:22:46

阅读数:337

评论数:0

Perceptual Losses for Real-Time Style Transfer and Super-Resolution----论文笔记

本文是参考文献[1]的笔记。该论文是Li Fei-Fei名下的论文。 引入 最近新出的图像风格转换算法,虽然效果好,但对于每一张要生成的图片,都需要初始化,然后保持CNN的参数不变,反向传播更新图像,得到最后的结果。性能问题堪忧。 但是图像风格转换算法的成功,在生成图像领域,产生了一个非常重...

2017-11-29 22:12:40

阅读数:82

评论数:0

AdversarialNetsPapers

https://github.com/zhangqianhui/AdversarialNetsPapers AdversarialNetsPapers The classical Papers about adversarial nets The First paper [G...

2017-11-29 20:57:43

阅读数:126

评论数:0

GAN的理解与TensorFlow的实现

前言 本文会从头介绍生成对抗式网络的一些内容,从生成式模型开始说起,到GAN的基本原理,InfoGAN,AC-GAN的基本科普,如果有任何有错误的地方,请随时喷,我刚开始研究GAN这块的内容,希望和大家一起学习。 生成式模型 何为生成式模型?在很多machine learning...

2017-11-21 11:08:00

阅读数:170

评论数:0

Linux下的tar压缩解压缩命令详解

tar -c: 建立压缩档案 -x:解压 -t:查看内容 -r:向压缩归档文件末尾追加文件 -u:更新原压缩包中的文件 这五个是独立的命令,压缩解压都要用到其中一个,可以和别的命令连用但只能用其中一个。下面的参数是根据需要在压缩或解压档案时可选的。 -z:有g...

2017-11-18 20:07:28

阅读数:83

评论数:0

最小二乘与交叉熵代价函数的区别(作用及公式推导)

交叉熵代价函数(Cross-entropy cost function)是用来衡量人工神经网络(ANN)的预测值与实际值的一种方式。与二次代价函数相比,它能更有效地促进ANN的训练。在介绍交叉熵代价函数之前,本文先简要介绍二次代价函数,以及其存在的不足。 1. 二次代价函数的不足...

2017-11-13 11:05:07

阅读数:275

评论数:0

卷积神经网络物体检测之感受野大小计算

原文地址:http://www.cnblogs.com/objectDetect/p/5947169.html  学习RCNN系列论文时, 出现了感受野(receptive field)的名词, 感受野的尺寸大小是如何计算的,在网上没有搜到特别详细的介绍, 为了加深印象,记录下自...

2017-11-03 12:39:16

阅读数:290

评论数:0

C++ 多态的实现及原理——面试的FAQ

C++的多态性用一句话概括就是:在基类的函数前加上virtual关键字,在派生类中重写该函数,运行时将会根据对象的实际类型来调用相应的函数。如果对象类型是派生类,就调用派生类的函数;如果对象类型是基类,就调用基类的函数   1:用virtual关键字申明的函数叫做虚函数,虚函数肯定是类的成员...

2017-11-03 11:47:36

阅读数:137

评论数:0

第一个只出现一次的字符 (剑指offer)

题目描述 在一个字符串(1 def firstnotrepeat(str): hashdict = {} for index,item in enumerate(str): if item in hashdict: hashdict[...

2017-10-19 21:10:48

阅读数:100

评论数:0

算法面试经常出现的问题——扑克牌中顺子和同花哪一个概率大?

问题描述:除去大小王,剩余的52张牌中,洗牌后,抓5张,抓到的结果中,同花和顺子哪一个概率大,请写出其算法。 算法分析,显然是一个组合问题,不需要考虑5张扑克牌的顺序,相当于52张中随机抽取5张,总的组合数为C( 52,5 ) = 52! / ( 5! * (52-5)! ) 结果是同花的...

2017-10-15 10:28:04

阅读数:1661

评论数:0

Fisher–Yates shuffle 算法——对给定数组进行乱序

面试某公司时,面试官当面让手写代码,实现一个shuffle函数的功能

2017-10-13 12:40:12

阅读数:257

评论数:0

分类算法之朴素贝叶斯分类(Naive Bayesian classification)

转载地址http://www.cnblogs.com/leoo2sk/archive/2010/09/17/naive-bayesian-classifier.html,原文作者:张洋 0、写在前面的话       我个人一直很喜欢算法一类的东西,在我看来算法是人类智慧的精华,其中蕴含...

2017-10-09 16:32:38

阅读数:128

评论数:0

c++头文件iomanip.h中的setw、setprecision、setfill和setbase函数

include    //不要用iostream.h ,会出现好多问题 #include     // io 流控制头文件, 主要是一些操纵用法如setw(int n),setprecision(int n) ,setbase(int   n),setfill(char c)的. ...

2017-09-15 11:41:17

阅读数:361

评论数:0

如何在git创建仓库并上传更新

command line instruction Git global setup git config --global user.name "your_define_name" git config --global user.email "your_emai...

2017-09-05 21:25:04

阅读数:270

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭