float和double类型的主要设计目标是为了科学计算和工程计算。他们执行二进制浮点运算,这是为了在广域数值范围上提供较为精确的快速近似计算而精心设计的。然而,它们没有提供完全精确的结果,所以不应该被用于要求精确结果的场合
BigDecimal构造方法
1.public BigDecimal(double val) 将double表示形式转换为BigDecimal *不建议使用
2.public BigDecimal(int val) 将int表示形式转换成BigDecimal
3.public BigDecimal(String val) 将String表示形式转换成BigDecimal
为什么不建议采用第一种构造方法呢?来看例子
public static void main(String[] args)
{
BigDecimal bigDecimal = new BigDecimal(2);
BigDecimal bDouble = new BigDecimal(2.3);
BigDecimal bString = new BigDecimal("2.3");
System.out.println("bigDecimal=" + bigDecimal);
System.out.println("bDouble=" + bDouble);
System.out.println("bString=" + bString);
}
运行结果如下
为什么会出现这种情况呢?
JDK的描述:1、参数类型为double的构造方法的结果有一定的不可预知性。有人可能认为在Java中写入newBigDecimal(0.1)所创建的BigDecimal正好等于 0.1(非标度值 1,其标度为 1),但是它实际上等于0.1000000000000000055511151231257827021181583404541015625。这是因为0.1无法准确地表示为 double(或者说对于该情况,不能表示为任何有限长度的二进制小数)。这样,传入到构造方法的值不会正好等于 0.1(虽然表面上等于该值)。
2、另一方面,String 构造方法是完全可预知的:写入 newBigDecimal("0.1") 将创建一个 BigDecimal,它正好等于预期的 0.1。因此,比较而言,通常建议优先使用String构造方法。
当double必须用作BigDecimal的源时,请使用Double.toString(double)
转成String,然后
使用String构造方法,或使用BigDecimal的静态方法valueOf,如下
public static void main(String[] args)
{
BigDecimal bDouble1 = BigDecimal.valueOf(2.3);
BigDecimal bDouble2 = new BigDecimal(Double.toString(2.3));
System.out.println("bDouble1=" + bDouble1);
System.out.println("bDouble2=" + bDouble2);
}
结果如下
首先我们先来看如下代码示例:
1 public class Test_1 {
2 public static void main(String[] args) {
3 System.out.println(0.06+0.01);
4 System.out.println(1.0-0.42);
5 System.out.println(4.015*100);
6 System.out.println(303.1/1000);
7 }
8
9 }
运行结果如下。
0.06999999999999999
0.5800000000000001
401.49999999999994
0.30310000000000004
你认为你看错了,但结果却是是这样的。问题在哪里呢?原因在于我们的计算机是二进制的。浮点数没有办法是用二进制进行精确表示。我们的CPU表示浮点数由两个部分组成:指数和尾数,这样的表示方法一般都会失去一定的精确度,有些浮点数运算也会产生一定的误差。如:2.4的二进制表示并非就是精确的2.4。反而最为接近的二进制表示是 2.3999999999999999。浮点数的值实际上是由一个特定的数学公式计算得到的。
其实java的float只能用来进行科学计算或工程计算,在大多数的商业计算中,一般采用java.math.BigDecimal类来进行精确计算。
在使用BigDecimal类来进行计算的时候,主要分为以下步骤:
1、用float或者double变量构建BigDecimal对象。
2、通过调用BigDecimal的加,减,乘,除等相应的方法进行算术运算。
3、把BigDecimal对象转换成float,double,int等类型。
一般来说,可以使用BigDecimal的构造方法或者静态方法的valueOf()方法把基本类型的变量构建成BigDecimal对象。
1 BigDecimal b1 = new BigDecimal(Double.toString(0.48));
2 BigDecimal b2 = BigDecimal.valueOf(0.48);
对于常用的加,减,乘,除,BigDecimal类提供了相应的成员方法。
1 public BigDecimal add(BigDecimal value); //加法
2 public BigDecimal subtract(BigDecimal value); //减法
3 public BigDecimal multiply(BigDecimal value); //乘法
4 public BigDecimal divide(BigDecimal value); //除法
进行相应的计算后,我们可能需要将BigDecimal对象转换成相应的基本数据类型的变量,可以使用floatValue(),doubleValue()等方法。
下面是一个工具类,该工具类提供加,减,乘,除运算。
1 public class Arith {
2 /**
3 * 提供精确加法计算的add方法
4 * @param value1 被加数
5 * @param value2 加数
6 * @return 两个参数的和
7 */
8 public static double add(double value1,double value2){
9 BigDecimal b1 = new BigDecimal(Double.valueOf(value1));
10 BigDecimal b2 = new BigDecimal(Double.valueOf(value2));
11 return b1.add(b2).doubleValue();
12 }
13
14 /**
15 * 提供精确减法运算的sub方法
16 * @param value1 被减数
17 * @param value2 减数
18 * @return 两个参数的差
19 */
20 public static double sub(double value1,double value2){
21 BigDecimal b1 = new BigDecimal(Double.valueOf(value1));
22 BigDecimal b2 = new BigDecimal(Double.valueOf(value2));
23 return b1.subtract(b2).doubleValue();
24 }
25
26 /**
27 * 提供精确乘法运算的mul方法
28 * @param value1 被乘数
29 * @param value2 乘数
30 * @return 两个参数的积
31 */
32 public static double mul(double value1,double value2){
33 BigDecimal b1 = new BigDecimal(Double.valueOf(value1));
34 BigDecimal b2 = new BigDecimal(Double.valueOf(value2));
35 return b1.multiply(b2).doubleValue();
36 }
37
38 /**
39 * 提供精确的除法运算方法div
40 * @param value1 被除数
41 * @param value2 除数
42 * @param scale 精确范围
43 * @return 两个参数的商
44 * @throws IllegalAccessException
45 */
46 public static double div(double value1,double value2,int scale) throws IllegalAccessException{
47 //如果精确范围小于0,抛出异常信息
48 if(scale<0){
49 throw new IllegalAccessException("精确度不能小于0");
50 }
51 BigDecimal b1 = new BigDecimal(Double.valueOf(value1));
52 BigDecimal b2 = new BigDecimal(Double.valueOf(value2));
53 return b1.divide(b2, scale).doubleValue();
54 }
55 }