自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(66)
  • 资源 (1)
  • 收藏
  • 关注

原创 PyQt5:自定义QListView显示

ListView 是一个基于模型-视图(Model-View)架构的控件,它通常用于显示大量的数据项。与 QListWidget 不同,QListView 不直接管理数据项的内容,而是通过一个数据模型(如 QStringListModel、QStandardItemModel 或自定义模型)来提供数据。若需要自定义 QListView 的每个item外观显示,需要自定义一个委托(QStyledItemDelegate 或 QItemDelegate)来绘制和编辑项。

2025-01-03 19:06:09 406

原创 Python win32gui 模块:窗口操作方法代码实例

‌状态共享‌:如果需要在多个回调函数之间共享状态(比如计数或标志),可以创建一个可变对象(如列表或字典),并将其作为可选参数传递。这样,回调函数就可以修改这个对象,并且这些修改在后续的回调中可见。‌传递数据‌:可以将任何需要的数据作为这个可选参数传递给回调函数。例如,传递一个列表或字典,以便在回调函数中收集或更新数据。‌控制枚举‌:可以使用这个参数来控制枚举的过程。例如,可以在回调函数中检查某个条件,如果满足,则通过修改这个参数来通知。

2024-12-25 23:06:56 1626

原创 py文件转pyd文件的那些坑

当编译py脚本文件发给客户使用时,为了保密源代码防止反编译,可以将py文件转换为pyd文件,然后使用pyinstaller工具转换为exe应用程序,但有时测试发现,,并且pyd文件是python扩展文件,无法直接调试,所以定位bug也很困难,只能一点一点查找问题。目录结构:├──main.py #入口文件,import test├── setup.py#py转pyd目前发现有以下几个坑,解决方法:使用内置函数pow计算负幂数或者直接使用小数'0.001'代替‘10**-3’。

2024-11-25 18:50:46 405

原创 Websocket助手

WS助手是WebSocket调试的开发工具,该客户端工具可以帮助开发人员快速连接到测试/生产环境,它可以帮助您监视和分析 Websocket 消息,并在开发过程中解决问题;可以模拟客户端实现与服务器的数据交互,并完成批量指令 操作,实现自动化操作。

2024-05-26 08:06:03 1069

原创 Python自动化工具(桌面自动化、Web自动化、游戏辅助)

自动替换文本内容。

2024-05-26 06:41:42 575

原创 机器学习中的假设检验

机器学习中的假设检验:正态性检验、方差分析、卡方分析、回归方程回归系数检验

2023-11-08 20:53:28 1297 2

原创 为什么要使用sys.exit(app.exec_())?为什么不直接使用app.exec_()

但若遇到应用程序异常退出,你想判断异常是什么,则使用sys.exit(app.exec_()),适用于交互环境下的图形界面应用。是直接退出主线程,而app.exec_()具备循环执行应用和退出应用的功能。如下图所示,点击窗口关闭按钮,窗口退出,输出123,不输出456。:运行窗口应用,退出窗口应用进程。

2023-07-23 10:52:14 2427

原创 假设检验:如何理解单侧、双侧检验的拒绝域

简单说就是:拒绝域与备择假设方向相同。假设检验就是一个证伪的过程,原假设和备择假设是一对"相反的结论"。"拒绝域",顾名思义,就是拒绝原假设的范围和方向,所以判断拒绝域在哪,可以直接看备择假设H1的条件是大于还是小于即可。上述只是判断方法之一,但如果你能明白置信区间原理,自然就可以明白单侧假设检验的位置了。从置信区间角度讲:例如,某个糖果厂宣称自家糖果的平均重量方法1:平均重量是6.5方法2:平均重量在[6.5-误差,6.5+误差]之间,置信度为0.95。............

2022-08-12 20:30:03 41690 2

原创 假设检验:正态性检验的那些bug——为什么对同一数据,normaltest和ktest会得到完全相反的结果?

为什么同一数据,normaltest和ktest会得到完全相反的结果

2022-08-09 21:40:39 1257 2

原创 机器学习完整项目实战附代码(二):探索型数据分析+特征工程+建模+报告

这是一个:给定一组包含目标(在本例中为价格:MEDV)的数据,我们希望训练一个可以学习将特征(也称为解释变量)映射到目标的模型。在训练中,我们希望模型能够学习特征和分数之间的关系,因此我们给出了特征和答案。然后,为了测试模型的学习效果,我们在一个从未见过答案的测试集上进行评估。

2022-05-26 15:55:58 7886 10

原创 机器学习完整项目实战附代码(一):探索型数据分析+特征工程+建模+报告

1. 项目背景  泰坦尼克号的沉没是历史上最臭名昭著的沉船之一。1912年4月15日,在她的处女航中,被广泛认为“不沉”的“泰坦尼克号”在与冰山相撞后沉没。不幸的是,船上的每个人都没有足够的救生艇,导致2224名乘客和船员中有1502人死亡。虽然生存中有一些运气因素,但似乎有些群体比其他群体更有可能生存下来。在这里,建立一个预测模型来回答这个问题:“什么样的人更有可能生存?”使用乘客数据(即姓名,年龄,性别,社会经济阶层等)。1.1 项目目标:  这是一个受监督的分类机器学习任务:给定一组包含目标(在

2022-05-17 11:52:26 28441 20

原创 为什么可以用概率分布密度函数来表示概率?

为什么经常会看到随机变量的概率分布多用概率密度函数来描述而不直接用概率分布函数?举个例子:现有如下数据集X,m个样本n个特征,y为标签向量集合,假设各维度遵循高斯分布

2022-04-21 13:14:30 1982 1

原创 机器学习中的高斯分布

高斯分布与聚类之GMM;高斯分布与数据预处理;高斯分布与马氏距离;

2022-04-19 22:09:38 8955 2

原创 juypter: import win32api ImportError: DLL load failed while importing win32api: 找不到指定模块

出现这种情况有两种原因1、juypter所在的配置环境未安装pywin32库;2、pywin32的版本问题

2022-04-18 10:55:21 2950

原创 机器学习之为什么要数据预处理?如何预处理数据?

为什么要标准化处理?什么情况下需要对数据标准化处理?哪些模型对标准化处理比较敏感?

2022-04-17 17:56:02 24093

原创 支持向量机SVM原理解析

支持向量机(SVM)可以找到这样一个超平面,使得所有相同类别的样本位于超平面一侧。如图示,可能存在无穷多个超平面。虽然他们的训练误差都等于0,但不能保证这些超平面在测...

2022-04-13 14:57:01 7598

原创 逻辑回归算法原理

逻辑回归本质上是线性回归套用激活函数sigmoid来输出概率值用于分类

2022-04-13 00:53:20 7562 1

原创 贝塞尔曲线-曲线拟合

如下图所示:在二维平面内选三个不同的点(起点A,中间点B,终点C)并依次用线段连接 在线段AB和BC上按比例分割找到新的起点和中间点:D、E两点,使得AD/AB=BE/BC 连接DE,并在DE上找到新的起点F点,EC上找到新的中间点G点,使其满足DF/DE=EG/EC 重复步骤1、2、3,找出符合上述条件的所有点,直到新的起点和终点C重合或者中间点和终点C重合时结束递归代码如下:class Bezier: def __init__(self,points,baseRatio

2022-04-10 17:28:06 5010

原创 python办公自动化实例(二):批量生成派工单

场景:实现效果:代码如下:

2022-04-10 15:17:01 1957

原创 UnicodeEncodeError: ‘latin-1‘ codec can‘t encode characters in position 8-9: ordinal not in range(25

想做一个合并PDF的脚本,在写入PDF文件的时候报了这个错误,也不知道是什么原因导致的网上也没查出来,后来看了一下utils.py这个报错文件的源码,直接把它的源码改一下,如由下图所示,然后就莫名奇妙的好了,有种把杀毒软件卸载的感觉。 ...

2022-04-10 14:50:50 1095

原创 python批量生成CAD图纸

python批量生成CAD图纸

2022-04-09 22:57:12 9342 15

原创 python办公自动化实例(三):批量修改文件名、创建文件夹

场景:整理一批文件,发现文件命名不够规范,想要重新命名,但文件很多,人工操作,过程繁复,这时候就可以使用程序来代替人工处理了。实现效果:其中,新文件名可根据我们想要的命名规范自行输入表格,然后由程序提取新文件名并自动批量冲命名文件。代码如下:#!user/bin/python3# _*_ coding:utf-8 _*_# author TingXiao-UIimport osimport xlsxwriter as xwimport xlrd#只读excel#提取文件名

2022-04-07 07:13:28 1522

原创 python办公自动化实例(二):批量跨表汇总统计多表信息

场景:有一批站点,我们从系统导出这批站点的每一个月的信息表,如下图所示,我们想分析这批站点本年度的运行情况,但是表格太多且信息分散,如何汇总?可以人工一个一个操作表格,这个过程是重复、枯燥的过程,且有可能有遗漏,这时候就可以使用程序来代替人工处理了。实现效果:每个原始表格信息如下所示:例如:我们对所有原始多个表提取站点告警以及停电信息,统计汇总输出到一个表内,汇总表如下所示代码如下:#!user/bin/python3# _*_ coding:utf-8 _*_..

2022-04-07 05:51:06 942

原创 python办公自动化实例(一):批量合并PDF文件并统计输出页码信息

场景:需要打印出版一批文件,人工逐个打印比较费事并且可能有遗漏,同时打印完后还需要统计页码来结算费用,这时候就可以使用程序来代替人工处理了。实现效果:代码如下:#!user/bin/python3# _*_ coding:utf-8 _*_# author TingXiao-UIfrom PyPDF2 import PdfFileReader,PdfFileWriterimport os#获取PDF文件页码def getPdfPagesNum(p): reader = Pd

2022-04-07 04:46:28 947

原创 python办公自动化实例(一):批量转换word文件为PDF

实现效果如下图所示#!user/bin/python3# _*_ coding:utf-8 _*_# author TingXiao-UIimport osfrom win32com import clientfrom shutil import copyfile#遍历word文件、转换为pdfdef ergodicPdf(rp): print('开始转换!') # 创建合并文件夹 printFlodPath = os.getcwd() + '\\打印' a = os.

2022-04-07 04:16:39 1889 2

原创 常见迭代优化算法解析及python实现

当数据集较小时,可以通过诸如求导方式一步就能求出参数w,但当数据集很大时,计算速度就会变得很慢,有时无法直接通过求导计算,这个时候可以通过迭代优化算法逐步求解。常见优化算法如下梯度下降:代价函数:总误差和最小。梯度,迭代同步更新 坐标下降:代价函数:总误差和最小。偏导,迭代逐项更新 牛顿迭代:二阶导 逐步回归:代价函数:总误差和最小。迭代逐项更新 最小角回归 :目标函数:寻找与残差最大相关的特征列。迭代逐项更新 拉格朗日乘法:解决含约束的优化问题1、梯度下降............

2022-04-06 19:06:06 12847 1

原创 python:动态显示+双Y坐标+多图显示+最大化窗口+保存图片方法

实现效果如下图所示伪代码如下所示:iters = 0while 条件: iters +=1 RC[iters] += 更新 RCIters.extend(RC.T.tolist()) 更新 fig = plt.figure(1) #最大化显示 manager = plt.get_current_fig_manager() manager.window.showMaximized() plt.ion() # 动态.

2022-04-06 13:51:09 1272

原创 八种常见回归算法解析及代码

目录一、线性回归1、最小二乘法-导数/偏导为0求参数最小二乘法求解参数​优缺点2、迭代求解参数​-梯度下降、坐标轴下降、最小角回归2.1使用梯度下降-对回归系数中w的每个元素分别求偏导并乘以学习率,迭代更新w2.1.1批量梯度下降:每次迭代依据全体样本的误差结果更新回归系数2.1.2随机梯度下降:每次迭代依据某个样本的误差结果更新回归系数2.1.3小批量梯度下降:每次迭代依据部分样本的误差结果更新回归系数2.2.1坐标轴下降法和梯度下降法的区别2.3、使用最...

2022-03-31 21:34:50 23822 4

原创 六种常见聚类算法

Kmeans聚类原则:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。逐次计算各簇中心的值为新的中心值,迭代更新,直至得到最好的聚类结果算法流程:适当选择k个类的初始中心; 在第n次迭代中,对任意一个样本,求其到k个中心的距离,将该样本归到距离最短的中心所在的类/簇; 利用均值等方法更新该类的中心值; 对于所有的k个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束;否则,则继续迭代。 优点:速度快,简单缺点:适合聚类球状类簇,不能发现一些混合度

2022-03-31 03:42:59 76350 12

原创 SVD应用--电影推荐系统+图像压缩

推荐系统如电影推荐系统的作用其实就是先对用户未评分的电影做预测评分,使数据完整,然后降序排序评分,为用户推荐评分前几名的物品

2022-03-31 02:19:16 2521

原创 相似性度量方法:相关系数和相似系数

皮尔逊相关系数-衡量相似度大学课本概率轮与数理统计定义:若(X,Y)是一个二维随机变量,则称E{[X-E(X)][Y-E(Y)]}为随机变量X与Y的协方差,记为Cov(X,Y)。即Cov(X,Y)=E{[X-E(X)][Y-E(Y)]}性质:Cov(aX,bY)=abCov(X,Y),(a,b是常数)相关系数协方差可以在一定程度上反映X与Y相互间的联系,但它还受X与Y本身数值大小的影响,譬如说,令X与Y各自增大k倍,即X1=kX,Y1=kY,这时X1与Y1间的相互联系和X与Y间的相互联

2022-03-31 01:00:18 10232

原创 看图就懂:线性代数之特征值分解与奇异值分解

目录基向量:基向量表达:变换相似矩阵行列式特征向量特征向量作为基向量特征基用途矩阵对角化特征值分解矩阵奇异值分解矩阵(SVD)奇异值分解性质基向量:基向量是过原点的单位向量,选择一对/组基向量(线性无关)组成参考坐标系,等距平行分布。如下所示 U[i,j] .........

2022-03-30 21:21:53 1847

原创 关联分析:Apriori与FP-growth算法-代码

大型超市有海量的交易数据,我们可以通过聚类算法寻找购买相似物品的人群,从而为特定人群提供更具个性化的服务。但是对于超市来讲,更有价值的是如何找出商品的隐藏关联,从而打包促销,以增加营业收入。其中最经典的案例就是关于尿不湿和啤酒的故事。怎样在繁杂的数据之间寻找到数据之间的隐藏关系?当然可以使用穷举法,但代价高昂,所以需要使用更加智能的方法在合理时间内找到答案。Apriori就是其中的一种关联分析方法。基本概念关联分析是一种在大规模数据集中寻找有趣关系的非监督学习算法。这......

2022-03-30 18:22:25 2108

原创 看图就懂:为什么L1正则化比L2正则化更容易得到稀疏解?为什么L2正则化可以用于防止过拟合?

相信大部分人都见到过,下面的这两张对比图,用来解释为什么L1正则化比L2正则化更容易得到稀疏解,然而很多人会纠结于"怎么证明相切是在角点上?",呃,不必就纠结于此,请注意结论中的"容易"二字,配图只是为了说明"容易"而已。假设x仅有两个属性,即w只有两个分量w1,w2,稀疏解->w1=0或w2=0,即w的等值线与平方误差等值线的切点位于坐标轴。事实上L1与L2均可以实现与平方误差等值线的切点位于坐标轴上,只不过L2需平方误差等值线的"中心点"位于坐标...

2022-01-16 20:51:45 3429

原创 使用plot的时候哪种情况下需要先排序然后再绘制线段

使用plot的时候哪种情况下需要先排序然后再绘制线段

2022-01-13 19:56:42 973

原创 凸包+凹包+凸边凹化算法

凸包算法+凹包算法+凸边凹化算法

2021-12-30 21:31:36 8462 2

原创 支持向量机SVM可视化(不调用sklearn库)

SVM的可视化(不调用sklearn库)

2021-12-24 15:43:35 4529 4

原创 ValueError: Object arrays cannot be loaded when allow_pickle=False的解决办法

当python3 中使用np.load(‘xxx.py’)加载数据时报错解决办法:np.load(‘xxx.py’,allow_pickle=False, 如下所示import numpy as npxxx = np.load('xxx.npy', allow_pickle=True))

2021-11-14 22:06:08 1034

原创 Python3中变量引用对象-如何防止原始数据被修改

在python中对一个变量(变量名)赋值前,变量的作用仅仅是一个标识符,只有赋值后(建立了指向对象的引用)才被创建。"赋值"后的变量指向响应的对象,类型属于对象,不再是变量。变量引用对象有两种引用方式:一般引用和共享引用。一般引用x = 1x = 'abc'上述代码中数值1和字符串“abc”分别是两种对象,初始变量名x赋值对象1被创建,变量名x指向对象1的内存空间,之后变量名x又指向了字符串"abc"的内存空间。共享引用共享引用即多个变量名指向同一个对象,当修改其...

2021-11-12 19:26:18 2757

原创 关于Jupyter 代码无法运行、内核显示正忙、Jupyter的命令窗口提示“Bad file descriptor”的问题解决办法

如下图所示问题

2021-08-16 08:05:39 6285 1

批量生成CAD图纸+批量替换文本、插入图片、批量打印PDF文件

在设计院天天加班画CAD图纸,甲方时不时就改需求,你是否需要画一批图纸,图纸的设计内容都相同,但需要修改文字内容,比如修改项目名称、图号、出图日期等这些琐碎重复的工作?可以使用工具来代替人工处理了,批量生成CAD图纸。

2024-12-11

a222.mp4

a222.mp4

2024-05-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除