leecode 解题总结:173. Binary Search Tree Iterator

#include <iostream>
#include <stdio.h>
#include <vector>
#include <string>
#include <stack>
using namespace std;
/*
问题:
Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the root node of a BST.

Calling next() will return the next smallest number in the BST.

Note: next() and hasNext() should run in average O(1) time and uses O(h) memory, where h is the height of the tree.

分析:实现一个二叉搜索树的迭代器,通过next()函数返回其中下一个最小的元素。hasNext()和next()需要在O(1)时间,并且
仅仅使用O(h)的内存,h是树的高度。
二叉搜索树是:左子树中任意结点 < 根节点 < 右子树中任意结点
举例:
				12
			4		     16
		0      8     14    18
	  -1  2   6  10  13 15 17 19
	     1 3
next就是记录当前最小元素的父节点就是next好像。
如果当前结点没有左右孩子,返回当前结点的父节点
如果当前结点有右孩子,返回该结点的右孩子中最左边的孩子
注意:二叉查找树的特点是按照中序遍历,是已排序序列,寻找下一个元素,说白了,实际上就是
中序遍历二叉树。只不过需要把遍历的过程限制一下,不是一次性遍历完,而是停留在某个结点,
这个结点就是当前结点。
那么所有的hasNext()条件就是栈不空或者当前结点不空
next(),就是先获取下一个结点,然后输出下一个结点的值

输入:
19
12 4 16 0 8 14 18 -1 2 6 10 13 15 17 19 N N 1 3
输出:
-1 0 1 2 3 4 6 8 10 12 13 14 15 16 17 18 19
*/


 struct TreeNode {
     int val;
     TreeNode *left;
     TreeNode *right;
     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 };

class BSTIterator {
public:
	//初始化的时候,先设置当前结点为根节点
    BSTIterator(TreeNode *root) {
        _current = root;
    }

    /** @return whether we have a next smallest number */
    bool hasNext() {
        if(!_nodes.empty() || _current)
		{
			return true;
		}
		else
		{
			return false;
		}
    }

    /** @return the next smallest number */
    int next() {
		int result = 0;
        while(!_nodes.empty() || _current)
		{
			//压入左孩子
			if(_current)
			{
				_nodes.push(_current);
				_current = _current->left;
			}
			//左孩子不存在,开始弹出栈顶元素
			else
			{
				//当前元素就是左孩子,其值就是结果
				TreeNode* node = _nodes.top();
				result = node->val;
				_nodes.pop();
				_current = node->right;
				break;
			}
		}
		return result;
    }

private:
	TreeNode* _current;
	stack<TreeNode*> _nodes;
};

TreeNode* buildBinaryTree(vector<string>& nums)
{
	if(nums.empty())
	{
		return NULL;
	}
	int size = nums.size();
	int j = 0;
	//结点i的孩子结点是2i,2i+1
	vector<TreeNode*> nodes;
	int value;
	for(int i = 0 ; i < size ; i++)
	{
		//如果当前结点为空结点,自然其没有左右孩子结点
		if("N" == nums.at(i))
		{
			nodes.push_back(NULL);
			continue;
		}
		value = atoi(nums.at(i).c_str());
		TreeNode* node = new TreeNode(value);
		nodes.push_back(node);
	}
	//设定孩子结点指向,各个结点都设置好了,如果但钱为空结点,就不进行指向
	for(int i = 1 ; i <= size ; i++)
	{
		if(NULL == nodes.at(i-1))
		{
			continue;
		}
		if(2 * i <= size)
		{
			nodes.at(i-1)->left = nodes.at(2*i - 1);
		}
		if(2*i + 1 <= size)
		{
			nodes.at(i-1)->right = nodes.at(2*i);
		}
	}
	//设定完了之后,返回根节点
	return nodes.at(0);
}


void deleteBinaryTree(TreeNode* root)
{
	if(!root)
	{
		return;
	}
	if(NULL == root->left && NULL == root->right)
	{
		delete root;
		root = NULL;
	}
	if(root)
	{
		deleteBinaryTree(root->left);
		deleteBinaryTree(root->right);
	}
}

void process()
{
	 vector<string> nums;
	 string value;
	 int num;
	 vector<vector<string> > result;
	 while(cin >> num )
	 {
		 nums.clear();
		 for(int i = 0 ; i < num ; i++)
		 {
			 cin >> value;
			 nums.push_back(value);
		 }
		 TreeNode* root = buildBinaryTree(nums);
		 BSTIterator i = BSTIterator(root);
		 while (i.hasNext()) 
		 {
			 cout << i.next() << " ";
		 }
		 deleteBinaryTree(root);
	 }
}



int main(int argc , char* argv[])
{
	process();
	getchar();
	return 0;
}


内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
class BinaryTree: def init(self, rootObj): self.key = rootObj self.leftChild = None self.rightChild = None def insertLeft(self, newNode): if self.leftChild == None: self.leftChild = BinaryTree(newNode) else: t = BinaryTree(newNode) t.leftChild = self.leftChild self.leftChild = t def insertRight(self, newNode): if self.rightChild == None: self.rightChild = BinaryTree(newNode) else: t = BinaryTree(newNode) t.rightChild = self.rightChild self.rightChild = t def getLeftChild(self): return self.leftChild def getRightChild(self): return self.rightChild def setRootVal(self, obj): self.key = obj def getRootVal(self): return self.key def buildParseTree(fpexp): fplist = list(fpexp) pStack = [] eTree = BinaryTree('') pStack.append(eTree) currentTree = eTree for i in fplist: if i == '(': currentTree.insertLeft('') pStack.append(currentTree) currentTree = currentTree.getLeftChild() elif i not in ['+','-','','/',')']: currentTree.setRootVal(int(i)) parent = pStack.pop() currentTree = parent elif i in ['+','-','','/']: currentTree.setRootVal(i) currentTree.insertRight('') pStack.append(currentTree) currentTree = currentTree.getRightChild() elif i == ')': currentTree = pStack.pop() else: raise ValueError return eTree def preorder(tree): if tree: print(tree.getRootVal()) preorder(tree.getLeftChild()) preorder(tree.getRightChild()) def inorder(tree): if tree!=None: inorder(tree.getLeftChild()) print(tree.getRootVal()) inorder(tree.getRightchild()) def postorder(tree): if tree!=None: postorder(tree.getLeftChild()) postorder(tree.getRightChild()) print(tree.getRootVal()) import operator def evaluate(parseTree): opers = {'+': operator.add,'-': operator.sub,'*': operator.mul,'/': operator.truediv} leftC = parseTree.getLeftChild() rightC = parseTree.getRightChild() if leftC and rightC: fn = opers[parseTree.getRootVal()] return fn(evaluate(leftC), evaluate(rightC)) else: return parseTree.getRootVal() # 测试案例 pt=buildParseTree('((10+5)*3)') print("先序遍历:") preorder(pt) print("中序遍历:") inorder(pt) print("后序遍历:") postorder(pt) print("求值结果:", evaluate(pt))有什么问题吗,如果有请帮我改错
06-01
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值