1. 经典快速排序图示过程
(1) 经典快速排序的总体流程
(2) 根据基准值分区的过程
在[算法题] 荷兰国旗问题中有详细的介绍。
2. 随机快速排序
经典快速排序总是指定数组或者某部分的最后一个元素作为基准值,随机快速排序指定数组或者某一部分中的随机值作为基准值。
3. 动图展示
quickSort.gif
4. 随机快速排序Java代码实现
/**
* 快速排序,使得整数数组 arr 有序
*/
public static void quickSort(int[] arr) {
if (arr == null || arr.length < 2) {
return;
}
quickSort(arr, 0, arr.length - 1);
}
/**
* 快速排序,使得整数数组 arr 的 [L, R] 部分有序
*/
public static void quickSort(int[] arr, int L, int R) {
if(L < R) {
// 把数组中随机的一个元素与最后一个元素交换,这样以最后一个元素作为基准值实际上就是以数组中随机的一个元素作为基准值
swap(arr, new Random().nextInt(R - L + 1) + L, R);
int[] p = partition(arr, L, R);
quickSort(arr, L, p[0] - 1);
quickSort(arr, p[1] + 1, R);
}
}
/**
* 分区的过程,整数数组 arr 的[L, R]部分上,使得:
* 大于 arr[R] 的元素位于[L, R]部分的右边,但这部分数据不一定有序
* 小于 arr[R] 的元素位于[L, R]部分的左边,但这部分数据不一定有序
* 等于 arr[R] 的元素位于[L, R]部分的中间
* 返回等于部分的第一个元素的下标和最后一个下标组成的整数数组
*/
public static int[] partition(int[] arr, int L, int R) {
int basic = arr[R];
int less = L - 1;
int more = R + 1;
while(L < more) {
if(arr[L] < basic) {
swap(arr, ++less, L++);
} else if (arr[L] > basic) {
swap(arr, --more, L);
} else {
L++;
}
}
return new int[] { less + 1, more - 1 };
}
/*
* 交换数组 arr 中下标为 i 和下标为 j 位置的元素
*/
public static void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
5. 复杂度
- 时间复杂度:O(nlogn)
- 空间复杂度:快速排序使用递归,递归使用栈,因此它的空间复杂度为O(logn)
- 稳定性:快速排序无法保证相等的元素的相对位置不变,因此它是不稳定的排序算法