ubunu上部署apache + django wsgi

本文详细介绍如何在Ubuntu系统上使用Apache服务器部署Django项目,包括安装Apache、WSGI模块,以及配置虚拟主机和Django项目的步骤。

一、安装apache

1. 安装apache

  sudo apt-get install apache2

2. 打开apache2.conf配置文件:

sudo gedit /etc/apache2/apache2.conf

在打开的apache2.conf文件尾部添加如下信息:

#ServerName

ServerName 127.0.0.1

3. sudo /etc/init.d/apache2 restart重启apache服务

4. 浏览器输入http://127.0.0.1 ,出现下面的情况代表安装成功

二、安装wsgi

先看下自己的python版本,若是2版本,则执行

sudo apt-get install libapache2-mod-wsgi

若是3版本则执行

sudo apt-get install libapache2-mod-wsgi-py3

三、django部署:

1. 在工程(django工程建立见django开发)目录下执行python manage.py collectstatic

2. 新建一个文件 mysite.conf

文件内容:

<VirtualHost *:80>
#serverName 设置本机的ip地址,这样可以通过局域网访问.通过localhost和127.0.0.1,我测试发现访问的结果不一样.
ServerName 192.168.1.99 
DocumentRoot /var/www/mysite #我们的刚才创建的项目目录 
<Directory /var/www/mysite>
    Require all granted #这里和网上的allow all 不一样,看你的apache2版本 2.4之后的都用我这个.
</Directory>
WSGIScriptAlias / /var/www/mysite/apache/django.wsgi
#//前面在建立的文件
</VirtualHost>

3.

注册站点: sudo a2ensite mysite 你的mysite.conf名字
回车看到 Enabling site mysite 说明注册成功

4.

sudo service apache2 reload
重新启动apache2

 

基于TROPOMI高光谱遥感仪器获取的大气成分观测资料,本研究聚焦于大气污染物一氧化氮(NO₂)的空间分布与浓度定量反演问题。NO₂作为影响空气质量的关键指标,其精确监测对环境保护与大气科学研究具有显著价值。当前,利用卫星遥感数据结合先进算法实现NO₂浓度的高精度反演已成为该领域的重要研究方向。 本研究构建了一套以深度学习为核心的技术框架,整合了来自TROPOMI仪器的光谱辐射信息、观测几何参数以及辅助气象数据,形成多维度特征数据集。该数据集充分融合了不同来源的观测信息,为深入解析大气中NO₂的时空变化规律提供了数据基础,有助于提升反演模型的准确性与环境预测的可靠性。 在模型架构方面,项目设计了一种多分支神经网络,用于分别处理光谱特征与气象特征等多模态数据。各分支通过独立学习提取代表性特征,并在深层网络中进行特征融合,从而综合利用不同数据的互补信息,显著提高了NO₂浓度反演的整体精度。这种多源信息融合策略有效增强了模型对复杂大气环境的表征能力。 研究过程涵盖了系统的数据处理流程。前期预处理包括辐射定标、噪声抑制及数据标准化等步骤,以保障输入特征的质量与一致性;后期处理则涉及模型输出的物理量转换与结果验证,确保反演结果符合实际大气浓度范围,提升数据的实用价值。 此外,本研究进一步对不同功能区域(如城市建成区、工业带、郊区及自然背景区)的NO₂浓度分布进行了对比分析,揭示了人类活动与污染物空间格局的关联性。相关结论可为区域环境规划、污染管控政策的制定提供科学依据,助力大气环境治理与公共健康保护。 综上所述,本研究通过融合TROPOMI高光谱数据与多模态特征深度学习技术,发展了一套高效、准确的大气NO₂浓度遥感反演方法,不仅提升了卫星大气监测的技术水平,也为环境管理与决策支持提供了重要的技术工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值