Python装饰器

这是在Python学习小组上介绍的内容,现学现卖、多练习是好的学习方式。

第一步:最简单的函数,准备附加额外功能

?
1
2
3
4
5
6
7
8
# -*- coding:gbk -*-
'''示例1: 最简单的函数,表示调用了两次'''
 
def  myfunc():
     print ( "myfunc() called." )
 
myfunc()
myfunc()

 

第二步:使用装饰函数在函数执行前和执行后分别附加额外功能

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# -*- coding:gbk -*-
'''示例2: 替换函数(装饰)
装饰函数的参数是被装饰的函数对象,返回原函数对象
装饰的实质语句: myfunc = deco(myfunc)'''
 
def  deco(func):
     print ( "before myfunc() called." )
     func()
     print ( "  after myfunc() called." )
     return  func
 
def  myfunc():
     print ( " myfunc() called." )
 
myfunc =  deco(myfunc)
 
myfunc()
myfunc()

第三步:使用语法糖@来装饰函数

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# -*- coding:gbk -*-
'''示例3: 使用语法糖@来装饰函数,相当于“myfunc = deco(myfunc)”
但发现新函数只在第一次被调用,且原函数多调用了一次'''
 
def  deco(func):
     print ( "before myfunc() called." )
     func()
     print ( "  after myfunc() called." )
     return  func
 
@deco
def  myfunc():
     print ( " myfunc() called." )
 
myfunc()
myfunc()

第四步:使用内嵌包装函数来确保每次新函数都被调用

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# -*- coding:gbk -*-
'''示例4: 使用内嵌包装函数来确保每次新函数都被调用,
内嵌包装函数的形参和返回值与原函数相同,装饰函数返回内嵌包装函数对象'''
 
def  deco(func):
     def  _deco():
         print ( "before myfunc() called." )
         func()
         print ( "  after myfunc() called." )
         # 不需要返回func,实际上应返回原函数的返回值
     return  _deco
 
@deco
def  myfunc():
     print ( " myfunc() called." )
     return  'ok'
 
myfunc()
myfunc()

第五步:对带参数的函数进行装饰

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# -*- coding:gbk -*-
'''示例5: 对带参数的函数进行装饰,
内嵌包装函数的形参和返回值与原函数相同,装饰函数返回内嵌包装函数对象'''
 
def  deco(func):
     def  _deco(a, b):
         print ( "before myfunc() called." )
         ret =  func(a, b)
         print ( "  after myfunc() called. result: %s"  %  ret)
         return  ret
     return  _deco
 
@deco
def  myfunc(a, b):
     print ( " myfunc(%s,%s) called."  %  (a, b))
     return  a +  b
 
myfunc( 1 , 2 )
myfunc( 3 , 4 )

第六步:对参数数量不确定的函数进行装饰

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# -*- coding:gbk -*-
'''示例6: 对参数数量不确定的函数进行装饰,
参数用(*args, **kwargs),自动适应变参和命名参数'''
 
def  deco(func):
     def  _deco( * args, * * kwargs):
         print ( "before %s called."  %  func.__name__)
         ret =  func( * args, * * kwargs)
         print ( "  after %s called. result: %s"  %  (func.__name__, ret))
         return  ret
     return  _deco
 
@deco
def  myfunc(a, b):
     print ( " myfunc(%s,%s) called."  %  (a, b))
     return  a + b
 
@deco
def  myfunc2(a, b, c):
     print ( " myfunc2(%s,%s,%s) called."  %  (a, b, c))
     return  a + b + c
 
myfunc( 1 , 2 )
myfunc( 3 , 4 )
myfunc2( 1 , 2 , 3 )
myfunc2( 3 , 4 , 5 )

第七步:让装饰器带参数

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# -*- coding:gbk -*-
'''示例7: 在示例4的基础上,让装饰器带参数,
和上一示例相比在外层多了一层包装。
装饰函数名实际上应更有意义些'''
 
def  deco(arg):
     def  _deco(func):
         def  __deco():
             print ( "before %s called [%s]."  %  (func.__name__, arg))
             func()
             print ( "  after %s called [%s]."  %  (func.__name__, arg))
         return  __deco
     return  _deco
 
@deco ( "mymodule" )
def  myfunc():
     print ( " myfunc() called." )
 
@deco ( "module2" )
def  myfunc2():
     print ( " myfunc2() called." )
 
myfunc()
myfunc2()

第八步:让装饰器带 类 参数

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# -*- coding:gbk -*-
'''示例8: 装饰器带类参数'''
 
class  locker:
     def  __init__( self ):
         print ( "locker.__init__() should be not called." )
         
     @staticmethod
     def  acquire():
         print ( "locker.acquire() called.(这是静态方法)" )
         
     @staticmethod
     def  release():
         print ( "  locker.release() called.(不需要对象实例)" )
 
def  deco( cls ):
     '''cls 必须实现acquire和release静态方法'''
     def  _deco(func):
         def  __deco():
             print ( "before %s called [%s]."  %  (func.__name__, cls ))
             cls .acquire()
             try :
                 return  func()
             finally :
                 cls .release()
         return  __deco
     return  _deco
 
@deco (locker)
def  myfunc():
     print ( " myfunc() called." )
 
myfunc()
myfunc()

第九步:装饰器带类参数,并分拆公共类到其他py文件中,同时演示了对一个函数应用多个装饰器

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# -*- coding:gbk -*-
'''mylocker.py: 公共类 for 示例9.py'''
 
class  mylocker:
     def  __init__( self ):
         print ( "mylocker.__init__() called." )
         
     @staticmethod
     def  acquire():
         print ( "mylocker.acquire() called." )
         
     @staticmethod
     def  unlock():
         print ( "  mylocker.unlock() called." )
 
class  lockerex(mylocker):
     @staticmethod
     def  acquire():
         print ( "lockerex.acquire() called." )
         
     @staticmethod
     def  unlock():
         print ( "  lockerex.unlock() called." )
 
def  lockhelper( cls ):
     '''cls 必须实现acquire和release静态方法'''
     def  _deco(func):
         def  __deco( * args, * * kwargs):
             print ( "before %s called."  %  func.__name__)
             cls .acquire()
             try :
                 return  func( * args, * * kwargs)
             finally :
                 cls .unlock()
         return  __deco
     return  _deco

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# -*- coding:gbk -*-
'''示例9: 装饰器带类参数,并分拆公共类到其他py文件中
同时演示了对一个函数应用多个装饰器'''
 
from  mylocker import  *
 
class  example:
     @lockhelper (mylocker)
     def  myfunc( self ):
         print ( " myfunc() called." )
 
     @lockhelper (mylocker)
     @lockhelper (lockerex)
     def  myfunc2( self , a, b):
         print ( " myfunc2() called." )
         return  a +  b
 
if  __name__ = = "__main__" :
     a =  example()
     a.myfunc()
     print (a.myfunc())
     print (a.myfunc2( 1 , 2 ))
     print (a.myfunc2( 3 , 4 ))

下面是参考资料,当初有不少地方没看明白,真正练习后才明白些:

1. Python装饰器学习 http://blog.csdn.net/thy38/article/details/4471421

2. Python装饰器与面向切面编程http://www.cnblogs.com/huxi/archive/2011/03/01/1967600.html

3. Python装饰器的理解 http://apps.hi.baidu.com/share/detail/17572338

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值