_ dingding_
码龄9年
关注
提问 私信
  • 博客:416,371
    问答:1,985
    动态:61
    418,417
    总访问量
  • 199
    原创
  • 609,226
    排名
  • 624
    粉丝

个人简介:华南理工大学硕士生,主要关注推荐系统,机器学习等。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2015-07-14
博客简介:

欢迎来到小丁的技术空间

博客描述:
小丁目前研二,研究方向为推荐系统,该博客主要记录平时写代码,学习遇到的一些问题的总结,欢迎一起交流
查看详细资料
个人成就
  • 获得463次点赞
  • 内容获得250次评论
  • 获得1,476次收藏
  • 代码片获得4,814次分享
创作历程
  • 29篇
    2020年
  • 41篇
    2019年
  • 8篇
    2018年
  • 55篇
    2017年
  • 70篇
    2016年
成就勋章
TA的专栏
  • 推荐系统
  • LibRec 学习笔记
    12篇
  • 推荐系统论文集合
    1篇
  • 推荐系统论文阅读
    19篇
  • 推荐系统常见问题
    7篇
  • 推荐系统代码实现
    5篇
  • Surprise 库学习笔记
    2篇
  • 工具 | 软件
  • 服务器使用笔记
    6篇
  • 工具软件
    9篇
  • Neo4j
    1篇
  • 算法刷题
  • 蓝桥杯
    83篇
  • PAT
    24篇
  • 暴力求解
    12篇
  • dfs
    12篇
  • 语言学习
  • C# 学习笔记
    2篇
  • Qt 学习笔记
    2篇
  • Python 学习笔记
    5篇
  • 总结
    3篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

SQL面试必会50题(含答案和学习链接)

最近在刷 sql 题,刷完了网上的 SQL 面试必会 50 题,现把我的答案和思路整理如下,供大家参考。这是目录一、创建四张表二、SQL面试必会50题(不含答案)三、SQL面试必会50题(含答案)四、学习资料一、创建四张表如图,以上学生表、成绩表、课程表、教师表是我们所有题目的基础表,创建的语句如下:--学生表CREATE TABLE `Student`(`s_id` VARCHAR(20),`s_name` VARCHAR(20) NOT NULL DEFAULT '',`s_bir.
原创
发布博客 2020.09.07 ·
28856 阅读 ·
62 点赞 ·
18 评论 ·
565 收藏

基本机器学习sklearn接口

下面列举了常见的机器学习算法的sklearn接口。1、LinearRegressionfrom sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn.linear_model import LinearRegression #线性回归iris = load_iris() #加载数据集X,y = iris.data,iris.target #(150,4.
原创
发布博客 2020.07.07 ·
1315 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

Sklearn简单学习笔记

下面是学习了莫烦大佬 sklearn 教程的笔记,是供我自己查阅的,不是很详细,介意的勿看~ 莫烦大佬的教程链接在最后一点学习资料里面。这是目录一、下载与安装二、选择合适的机器学习方法三、通用的学习模式四、sklearn 的 datasets 数据库五、常用属性和功能六、预处理数据七、交叉验证八、保存模型九、学习资料一、下载与安装使用命令:pip install -U scikit-learn 或者 conda install scikit-learn二、选择合适的机器学习方法三、通用的学习.
原创
发布博客 2020.07.03 ·
630 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Matplotlib学习笔记

文章目录1、引入包2、基本用法3、Figure4、修改图片的横纵坐标值5、修改坐标轴的位置6、显示图例7、添加注解8、调整刻度背景9、画散点图10、画柱状图11、绘制等高线12、打印图像13、3D数据图14、多个图15、图中图16、参考链接1、引入包import numpy as npimport matplotlib.pyplot as pltimport matplotlib.gridspec as gridspec2、基本用法def show1(): """ 基本用法
原创
发布博客 2020.06.12 ·
731 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

LibRec 学习笔记(十二):SBPR 的训练 Loss 为什么越来越大,没有收敛的迹象?

简单记录刚刚在使用 librec 时发现的一个小点,发现越训练,loss值越大???训练的数据集是 filmtrust ,训练的效果如下图所示,loss值一直在上升,肯定是有问题的!说明:上图的 loss 是每一次迭代的 loss 总值delta_loss 是上一次迭代的 loss 值 - 本次迭代 loss 值在网上查了下才发现可能是学习率太大的原因去查了资料才发现是...
原创
发布博客 2020.04.24 ·
2669 阅读 ·
9 点赞 ·
6 评论 ·
5 收藏

LibRec 学习笔记(十一):更新 LibRec 3.0 版本的 code snippet(含过滤模块)

下面是代码:package librec.qiqi;import java.io.IOException;import java.util.ArrayList;import java.util.List;import org.apache.commons.logging.Log;import org.apache.commons.logging.LogFactory;impor...
原创
发布博客 2020.04.19 ·
1146 阅读 ·
3 点赞 ·
10 评论 ·
4 收藏

推荐系统常见问题(七):惊讶!为什么训练集比例越大,效果越差?

一、苦恼的一周最近做实验,被一个问题苦恼了一周。本来想要验证算法在40%、60%、80%数据集比例情况下的不同实验效果。结果发现,训练集比例越大,效果竟然越差!!!这和我以往的–训练集越多,训练效果越好的认知完全相违背!!!然后我开始一个个的排除这样情况的原因:先看看是不是我训练集和测试集的弄反了,结果没有反;再看看我的实验方法是不是哪里有错误,结果找不出错误;然后我又在想我划分数据集...
原创
发布博客 2020.04.02 ·
7032 阅读 ·
18 点赞 ·
8 评论 ·
29 收藏

推荐系统常见问题(六):CTR 预估和推荐系统有什么区别???

在学习推荐系统的时候,一方面搞不清楚推荐系统和机器学习的差别,一方面搞不清楚 CTR 预估和推荐系统的差别。。。这学的也太费劲了。。。下面的答案来自知乎,这是链接,我从中选取了自认为说的比较有道理的几个答案。答案一正好在计算广告和推荐系统两个领域都有从业经验,就答一下这个问题。题目问的是CTR和推荐算法的“本质”区别,那么我们就得往“本质”上说,什么算法原理上的区别,系统设计上的区别,...
原创
发布博客 2020.04.02 ·
3352 阅读 ·
12 点赞 ·
0 评论 ·
9 收藏

推荐系统常见问题(五):推荐系统中的目标函数有哪些类型?

一直以来对于机器学习和推荐系统是有什么区别,有什么联系???搞不懂!尤其是机器学习中有目标函数,优化方法一说,而推荐系统中也有这一说,这两东西难道是一个东西???到现在都有些迷迷糊糊的。所以下面是自己的粗浅看法,并不一定对,之后知识有更新了,再来链接里更新~一、机器学习中的目标函数我们都知道在机器学习中 目标函数 = 经验风险 + 结构风险经验风险:即代价函数,是整个训练集上所有样本误差...
原创
发布博客 2020.04.01 ·
1637 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

LibRec 学习笔记(十):代码走读 MostPopularRecommender

最近做实验,瞄了一眼MostPopularRecommender推荐的结果,与我想象中的结果不一样,我想象的是这个算法给每个人推荐一模一样的列表,但是这里显示的结果并不是这样,遂仔细研究了下,以下是我粗浅的分析。这是目录一、算法思想二、MostPopularRecommender 代码走读三、MostPolularTestCase 代码走读四、推荐的时候,是否需要剔除用户已经消费过的物品?...
原创
发布博客 2020.04.01 ·
997 阅读 ·
7 点赞 ·
0 评论 ·
3 收藏

LibRec 学习笔记(九):如何利用已有轮子 LibRec 库实现自己的推荐算法?

在 LibRec 中实现自己的算法,首先需要按照自己算法所属的类别去继承相应的抽象类,并按要求去实现相应的抽象方法,也可以按自己的需要去重写抽象类中的方法。目前...
原创
发布博客 2020.04.01 ·
2064 阅读 ·
5 点赞 ·
8 评论 ·
12 收藏

推荐系统常见问题(四):如果物品没有在训练集中出现过,而在测试集中出现,如何计算RMSE?

这个问题是别人问我的一个问题,想想也是一个常见问题,所以更新上来。原问题:训练集与测试集划分后有可能某个物品只出现在测试集中,这种情况在训练时得不到该物品的潜在特征向量就无法得到用户对该物品的评级预测,这时该怎么计算RMSE?答:首先是可以得到该物品的特征向量的,同时也可以得到用户对该物品的评级预测的。矩阵分解方法的目的是为了矩阵分数补全,通过将用户-物品-评分矩阵分解成用户矩阵 P ...
原创
发布博客 2020.03.21 ·
1654 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏