hdu 1024 Max Sum Plus Plus(动态规划+m子段和的最大值)

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qiqi_skystar/article/details/50599816

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024

Max Sum Plus Plus


Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 22262    Accepted Submission(s): 7484


Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
 

Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 

Output
Output the maximal summation described above in one line.
 

Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
 

Sample Output
6 8
Hint
Huge input, scanf and dynamic programming is recommended.
 

Author
JGShining(极光炫影)
 

Recommend
We have carefully selected several similar problems for you:  1074 1025 1080 1160 1078 
 

题目大意:输入一个m,n分别表示成m组,一共有n个数即将n个数分成m组,m组的和加起来得到最大值并输出。

解题思路:状态dp[i][j]表示前j个数分成i组的最大值。

动态转移方程:dp[i][j]=max(dp[i][j-1]+a[j],max(dp[i-1][k])+a[j]) (0<k<j)

dp[i][j-1]+a[j]表示的是前j-1分成i组,第j个必须放在前一组里面。

max( dp[i-1][k] ) + a[j] )表示的前(0<k<j)分成i-1组,第j个单独分成一组。

但是题目的数据量比较到,时间复杂度为n^3,n<=1000000,显然会超时,继续优化。

max( dp[i-1][k] ) 就是上一组 0....j-1 的最大值。我们可以在每次计算dp[i][j]的时候记录下前j个
的最大值 用数组保存下来 ,这样时间复杂度为 n^2。


详见代码。

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

#define N 1000000
#define INF 0x7fffffff

int a[N+10];
int dp[N+10],Max[N+10];//max( dp[i-1][k] ) 就是上一组 0....j-1 的最大值。

int main()
{
    int n,m,mmax;
    while (~scanf("%d%d",&m,&n))
    {
        for (int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
        }
        memset(dp,0,sizeof(dp));
        memset(Max,0,sizeof(Max));
        for (int i=1;i<=m;i++)//分成几组
        {
            mmax=-INF;
            for (int j=i;j<=n;j++)//j个数分成i组,至少要有i个数
            {
                dp[j]=max(dp[j-1]+a[j],Max[j-1]+a[j]);
                Max[j-1]=mmax;
                mmax=max(mmax,dp[j]);
            }
        }
        printf ("%d\n",mmax);
    }
    return 0;
}


展开阅读全文

没有更多推荐了,返回首页