# Max Sum Plus Plus

Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 22262    Accepted Submission(s): 7484

Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But Im lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^

Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.

Output
Output the maximal summation described above in one line.

Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3

Sample Output
6 8
Hint
Huge input, scanf and dynamic programming is recommended.

Author
JGShining（极光炫影）

Recommend
We have carefully selected several similar problems for you:  1074 1025 1080 1160 1078

dp[i][j-1]+a[j]表示的是前j-1分成i组，第j个必须放在前一组里面。

max( dp[i-1][k] ) + a[j] )表示的前（0<k<j）分成i-1组，第j个单独分成一组。

max( dp[i-1][k] ) 就是上一组 0....j-1 的最大值。我们可以在每次计算dp[i][j]的时候记录下前j个

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

#define N 1000000
#define INF 0x7fffffff

int a[N+10];
int dp[N+10],Max[N+10];//max( dp[i-1][k] ) 就是上一组 0....j-1 的最大值。

int main()
{
int n,m,mmax;
while (~scanf("%d%d",&m,&n))
{
for (int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
memset(dp,0,sizeof(dp));
memset(Max,0,sizeof(Max));
for (int i=1;i<=m;i++)//分成几组
{
mmax=-INF;
for (int j=i;j<=n;j++)//j个数分成i组，至少要有i个数
{
dp[j]=max(dp[j-1]+a[j],Max[j-1]+a[j]);
Max[j-1]=mmax;
mmax=max(mmax,dp[j]);
}
}
printf ("%d\n",mmax);
}
return 0;
}
`