期权基础之波动率

波动率是衡量资产价格波动剧烈程度的指标,常用于风险管理。期权价格与波动率密切相关,隐含波动率反映市场对未来波动率的预期,历史波动率则有滞后性。波动率越大,期权理论价格越高,买方收益潜力增大,卖方需收取更高权利金。做多波动率策略如买入跨式价差,做空波动率策略如卖出跨市价差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在金融市场上,波动率被投资者用于衡量资产价格波动的剧烈程度,而资产价格的波动实质上反映了资产所蕴含的风险。因此波动率也常被作为衡量资产风险的指标,并被用于对资产的风险管理。

对于普通投资者,波动率的含义则意味着股票或指数的"投机价值“。普通投资者通过低买高卖获利,较高的波动率则意味着投资者的投资目标实现的难易程度。

简单来说,资产波动率高的时候,往往意味着其处于明显的趋势波动中,波动率低的时候,则是资产处于震荡区间之中。

与价格的涨跌趋势类似,波动率也可以通过展示的形式画出图表,供投资者做为投资决策的依据。预测波动率与预测价格波动趋势一样非常困难,波动率会因为资产的突发性信息,投资者集中性买卖,相关市场的意外波动等因素发生难以预期的变化。波动率与价格趋势相比,具有更明显的均值回归特性,故其历史变化更具参考价值。

期权的价格变化与波动率关系密切,其标的物的历史波动率会影响到期权的价值。同时,不同行权价不同到期日的期权,还可以用隐含波动率做为价格相对高低的判断依据。简单来说,理解波动率是理解期权交易的关键。

  1. 常用波动率的定义

(1)期权的隐含波动率通常可以通过T型报价表看到,是通过期权市场价格代入BS公式反推求出的波动率,是期权的市场价格中“隐含”的对标的资产波动率的预期值,包含市场中大量前瞻性的信息,反映了市场对于标的资产未来波动率的预期,因而在期权定价、标的资产市场预测以及策略交易中具有非常重要的作用,我们也可以把隐含波动率也可以理解为市场实际波动率的预期。

举例:以上证50ETF期权为例,当上证50ETF期权价格为2.3元/份时,一个月后到期、执行价格为2.3元/份的认购期权价格为0.058元

### 期权波动率策略 Python 实现示例 #### 使用 `py_vollib` 库计算隐含波动率并构建简单波动率突破策略 为了实现期权波动率策略,在 Python 中可以利用 `py_vollib` 来获取市场数据中的隐含波动率,并基于此设计交易逻辑。下面是一个简单的例子,展示如何结合历史波动率当前市场价格来决定买卖时机。 ```python from py_vollib.black_scholes.implied_volatility import implied_volatility import numpy as np import pandas as pd def calculate_implied_volatility(option_price, S, K, t, r, flag='c'): """ 计算给定参数下的隐含波动率 """ iv = implied_volatility(option_price, S, K, t, r, flag) return iv * 100 # 将结果转换成百分比形式[^1] # 假设我们有一组期权价格和其他必要输入变量的数据集 data = { 'option_prices': [17.5], # 行权价 'underlying_prices': [100], # 标的价格 'strikes': [100], # 执行价 'times_to_expiry': [0.5], # 到期时间(年) 'risk_free_rates': [0.02] # 无风险利率 } df = pd.DataFrame(data) # 添加一列用于存储计算出来的隐含波动率值 df['implied_vol'] = df.apply(lambda row: calculate_implied_volatility( option_price=row.option_prices, S=row.underlying_prices, K=row.strikes, t=row.times_to_expiry, r=row.risk_free_rates), axis=1)[^3] print(df[['implied_vol']]) ``` 这段代码展示了如何使用 `py_vollib` 库来计算单个期权合约的隐含波动率。实际应用中可能需要处理更复杂的情况,比如批量导入多个合约的信息或是考虑不同类型的期权看涨/看跌)。此外,还可以进一步扩展这个基础框架,加入更多高级特性如滚动窗口内的平均波动率比较等,从而形成完整的波动率突破型交易策略[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qiquan2021

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值