http://www.lydsy.com/JudgeOnline/problem.php?id=1345
Description
对于一个给定的序列a1, …, an,我们对它进行一个操作reduce(i),该操作将数列中的元素ai和ai+1用一个元素max(ai,ai+1)替代,这样得到一个比原来序列短的新序列。这一操作的代价是max(ai,ai+1)。进行n-1次该操作后,可以得到一个长度为1的序列。我们的任务是计算代价最小的reduce操作步骤,将给定的序列变成长度为1的序列。n( 1 <= n <= 1,000,000 ),
贪心很明显,最大的一定留在最后合并。
所以就可以递归下去,如果最大的是X, -----X------,那一定是先把X左边的合成一个,X右边的合成一个,再来和X合并。
那左边的又是左边的最大的最后合并....就这样递归下去。
只是真要这么写就恶心了。
这样考虑:
若A<B 则B一定会当一次区间合并的权。反之A一定会当一次区间合并的权。
#include <cstdio>
#include <algorithm>
#define rep(i,l,r) for (int i=l;i<=r;++i)
int getx(){
char c;int x;
for (c=getchar();c<'0'||c>'9';c=getchar());
for (x=0;c>='0'&&c<='9';c=getchar())
x=(x<<3)+(x<<1)+c-'0';
return x;
}
int n;int last,now;
long long ans=0;
int main(){
n=getx();
if (n==1){printf("0");exit(0);}
rep(i,1,n){
now=getx();
if (i>1&&now>=last) ans+=now;else ans+=last;
last=now;
}
printf("%lld\n",ans);
}