排序:
默认
按更新时间
按访问量

【机器学习算法】:提升树(Boosting tree)

提升树是以分类树和回归树为基本分类器的提升方法。提升树被认为是统计学习中性能最好的方法之一。Boosting方法其实本质上采用的是加法模型(基函数的线性组合)与前向分布算法。以决策树为基函数的Boosting方法被称为提升树(Boosting tree)。对分类问题决策树是二叉分类树,对回归问题决...

2018-06-20 17:16:40

阅读数:48

评论数:0

【机器学习算法】:Boosting提升算法(Adaboost)

Boosting提升算法 所谓提升算法,即在分类问题中,通过改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类器性能。而AdaBoost是一种典型的提升算法。 由于得到弱学习算法比强嘘唏算法更容易获取。而我们有许多将弱学习算法提升为强学习算法的Boosting方法,其中最...

2018-06-19 20:12:22

阅读数:24

评论数:0

【机器学习算法】:逻辑回归

所谓回归和分类:在深度网络中,分类任务和回归任务的主要区别就在于:loss函数(其模型输出和标签的比较)和标签的区别,和其前边的特征特区部分没有任何关系。而传统的机器学习算法,可以认为没有太多之前的特征处理过程,所以在机器学习算法中回归和分类任务就是模型的输出(和所谓的loss是一样的)和标...

2018-06-15 15:07:47

阅读数:11

评论数:0

【机器学习算法】:极大似然估计

1.极大似然估计在什么情况下用 step1:已知一个模型(比如逻辑回归模型,线性回归模型)。 step2:给定已知的数据集D。 step3:用极大似然估计来估计step1中模型的参数。 step4:得到参数后,模型就完整啦~ 可以用完整的模型对未来的结果进行预测。 2.为什么可以用极...

2018-06-15 14:13:27

阅读数:21

评论数:0

【机器学习算法】:朴素贝叶斯法

朴素贝叶斯法是基于贝叶斯定理的分类方法。 朴素贝叶斯分类 朴素贝叶斯法之所以叫朴素,因为其做了一个较强的假设,该假设为:用于分类的特征,在类确定的条件下,都是独立分布的。 李航的统计学习方法中是如下介绍朴素贝叶斯分类原理的~ 上述方法中提到,需要我们最大化后验概率,得到最后的结果 ...

2018-05-23 10:17:15

阅读数:35

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭