【论文】人脸特征点检测:TCDCN

Learning and Transferring Multi-task Deep Representation for Face Alignment 摘要 通过多任务学习提升检测鲁棒性。特别的,使用与人脸相关的属性共同学习人脸的特征点位置。 tasks-constrained deep m...

2018-05-31 16:32:52

阅读数:26

评论数:0

【数据结构算法】图(六):基于邻接矩阵的最小生成树(prim算法)Python实现

# coding:UTF-8 def prim(graph, vertex_num): INF = 1 << 10 visit = [False] * vertex_num dist = [INF] * vertex_num ...

2018-05-31 13:18:26

阅读数:47

评论数:0

【python】matplotlib画图

散点图 # -*- coding: utf-8 -*- __author__ = 'yuanlei' import matplotlib from pandas import read_csv import matplotlib.pyplot as plt data = read_csv(&a...

2018-05-29 19:52:54

阅读数:35

评论数:0

【数据结构算法】图(五):基于邻接矩阵的广度优先搜索(BFS)C++实现

利用邻接矩阵的数据结构表示图,并实现BFS 如下图两张图片所示,广度优先搜索就是先找到A,然后接着找BF,找到B接着找CIG;这是一种以A的走向为前方的右手原则。用队列实现这种逻辑。 /* ADT 队列(Queue) Data 同线性表。元素具有相同的类型,相邻元素具有前驱和后继关系。 O...

2018-05-25 12:58:21

阅读数:50

评论数:0

【CCNA】5.OSI Layer4 传输层

IP编址的不足 由于第三层的IP地址是connectless的,虽然传输快,但为了保障数据传输的可靠性,网络第四层的主要功能是保证数据的可靠传输,以及当数据传输错误时以什么样的机制补救,主要的协议是TCP和UDP。 传输层主要功能 多路复用;分段;流控制;有向连接(对应于IP地址的无向)...

2018-05-25 09:47:36

阅读数:21

评论数:0

【Linux】:gdb调试器

gdb是基于Linux命令行的调试器 操作方式 打开调试器 gbd filename

2018-05-25 09:15:55

阅读数:18

评论数:0

【CCNA】4.OSI Layer3 网络层

Mac编址存在的问题 在之前的博客中提到,2层数据链路层中,我们是通过mac地址来进行编址的。而这中方式会有如下三个问题: 1. 所有的设备处在同一个广域网中(这样信息就不安全) 2. 设备定位查找麻烦 3. 难以对设备进行区分...

2018-05-24 19:26:32

阅读数:25

评论数:0

【数据结构算法】图(四):基于邻接矩阵的深度优先搜索(DFS) C++实现

// ConsoleApplication1.cpp : 定义控制台应用程序的入口点。 #include "stdafx.h" #include<iostream&am...

2018-05-24 19:12:11

阅读数:21

评论数:0

【论文】【LapSRN】Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution

模型框架图(其中一级) 若S是我们的放大因子,那么我们在log2S层,渐进的预测残差图。模型主要有两部分:特征提取,图像重构 特征提取 图像重构 对于每一级而言(s层),对输入图像用一个scale等于2的一个上采样层进行操作。然后这个上采样层将和当前层的特征提取分支预测得到的resid...

2018-05-24 16:54:01

阅读数:59

评论数:0

【数据结构算法】图(三):存储结构(邻接表,十字链表,邻接多重表,边集矩阵)

由于邻接矩阵这种存储结构存在一定空间浪费,因此考虑用邻接表 邻接表 这是一种数组与链表结合一起来存储。 无向图 有向图(把顶点当弧尾) 有向图(把顶点当弧头)【这种叫做逆邻接表】 十字链表 邻接表固然优秀,但也有不足的地方,比如对有向图的处理的时候,有时需要建...

2018-05-24 09:17:36

阅读数:67

评论数:0

【Linux】:gcc编译器

gcc GNU C Compiler是GNU推出的功能强大,性能优越的多平台编译器。 使用gcc编译程序时,可分为四个阶段 1.预处理 2.编译:生成.o文件 3.汇编 4.链接:生成可执行文件 gcc通过后缀来区分输入文件的类型 gcc最基本的用法 gcc[options]...

2018-05-24 08:44:07

阅读数:148

评论数:0

【机器学习算法】:朴素贝叶斯法

朴素贝叶斯法是基于贝叶斯定理的分类方法。 朴素贝叶斯分类 朴素贝叶斯法之所以叫朴素,因为其做了一个较强的假设,该假设为:用于分类的特征,在类确定的条件下,都是独立分布的。 李航的统计学习方法中是如下介绍朴素贝叶斯分类原理的~ 上述方法中提到,需要我们最大化后验概率,得到最后的结果 ...

2018-05-23 10:17:15

阅读数:36

评论数:0

【深度学习】:优化器的选择

三种梯度下降法: 若是样本很多,用标准梯度法会很慢,用随机梯度会很快,但是由于每个样本都会用来更新权重,会有噪声的引入,会产生更新错误。 Momentum: 因此训练速度会有一定的加快。 NAG(Nesterov accelerated gradient): Adagra...

2018-05-22 00:28:36

阅读数:97

评论数:0

【深度学习】:代价函数的选择

二次代价函数: 如上图所示的A点假设我们的目标是0,那么B点离目标比较远,但是由于梯度比较小所以更新速度很慢,这种情况不和逻辑很不好,这就是二次代价函数的缺点。 交叉熵代价函数: 对数似然函数: ...

2018-05-22 00:11:09

阅读数:50

评论数:0

【ubuntu】:Ubuntu下更改默认Python版本

Ubuntu下更改默认Python版本 查看当前机器中有那几个版本的Python 查看当前默认版本 列出所有可用的Python替代版本 进行替换 Update-alternatives –config python 利用这个语句,并根据那种数字选择,发现并没...

2018-05-21 23:53:13

阅读数:19

评论数:0

【ubuntu】:Ubuntu查看cuda和cudnn版本

Ubuntu查看cuda和cudnn版本

2018-05-21 23:44:49

阅读数:1352

评论数:0

【Linux】: Vi编辑器

命令行模式: 最初进入的一般模式,该模式下可以移动光标,可以浏览和删除但无法编辑文字。 插入模式: 只有在该模式下,用户才能进入文字的编辑输入,用户可以使用[Esc]按键返回命令行模式。[利用键盘上的“i”键,就可以进入插入模式] 底行模式: 该模式下,光标位于屏幕底行,用户可以...

2018-05-21 23:37:37

阅读数:13

评论数:0

【Linux】:常用指令

Crtl+Alt+Shift+F1/F7 进入纯字符界面/ 退回图形界面 useradd yl 添加一个用户(yl字段可以自己定义一个名字) su su root 该指令可以进入root用户 su yl 该指令可以切换到yl用户 note:root用户切换到普通用户不...

2018-05-21 23:34:32

阅读数:25

评论数:0

【数据结构算法】:C++&Python实现插入排序

动图展示 时间复杂度:o(n*n) C++ Python __author__ = '__yuanlei__' def InsertSort(arr): for i in range(1,len(arr)): preIndex = i -1 ...

2018-05-21 13:19:39

阅读数:15

评论数:0

【数据结构算法】:C++&Python实现快速排序

动图展示 算法复杂度o(n*logn) C++ Python #快速排序的思想:设置一个基准,对基准左右两边进行分别的排序 __author__ = '__yuanlei__' def QuickSort(array, left, right): if left &...

2018-05-21 12:59:40

阅读数:18

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭