Equirectangular projection

本文介绍了equirectangular投影,起源于古希腊的Marinus,常用于全景地图制作。它将经线映射为垂直直线,纬线为水平直线,非等面积且非保真,主要在主题制图中使用,如Celestia和NASA WorldWind。特别地,plate carrée因其简单的像素地理对应关系,在全球卫星数据和全景照片中广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文转自https://en.wikipedia.org/wiki/Equirectangular_projection

The equirectangular projection (also called the equidistant cylindrical projection or la carte parallélogrammatique projection), and which includes the special case of the plate carrée projection (also called the geographic projectionlat/lon projection, or plane chart), is a simple map projection attributed to Marinus of Tyre, who Ptolemy claims invented the projection about AD 100.[1] The projection maps meridians to vertical straight lines of constant spacing (for meridional intervals of constant spacing), and circles of latitude to horizontal straight lines of constant spacing (for constant intervals of parallels). The projection is neither equal area nor conformal. Because of the distortions introduced by this projection, it has little use in navigation or cadastral mapping and finds its main use in thematic mapping. In particular, the plate carrée has become a standard for global raster datasets, such as CelestiaNASA World Wind, the USGS Astrogeology Research Program, and Natural Earth, because of the particularly simple relationship between the position of an image pixel on the map and its corresponding geographic location on Earth or other spherical solar system bodies. In addition it is frequently used in panoramic photography to represent a spherical panoramic image.[2]

Equirectangular projection of the world; the standard parallel is the equator (plate carrée projection).

Definition

The forward projection transforms spherical coordinates into planar coordinates. The reverse projection transforms from the plane back onto the sphere. The formulae presume a spherical model and use these definitions:

  • {\displaystyle \lambda } is the longitude of the location to project;
  • {\displaystyle \varphi } is the latitude of the location to project;
  • {\displaystyle \varphi _{1}} are the standard parallels (north and south of the equator) where the scale of the projection is true;
  • {\displaystyle \varphi _{0}} is the central parallel of the map;
  • {\displaystyle \lambda _{0}} is the central meridian of the map;
  • {\displaystyle x} is the horizontal coordinate of the projected location on the map;
  • {\displaystyle y} is the vertical coordinate of the projected location on the map;
  • {\displaystyle R} is the radius of the globe.

Longitude and latitude variables are defined here in terms of radians.

Forward

{\displaystyle {\begin{aligned}x&=R(\lambda -\lambda _{0})\cos \varphi _{1}\\y&=R(\varphi -\varphi _{0})\end{aligned}}}

The plate carrée (French, for flat square), is the special case where {\displaystyle \varphi _{1}} is zero. This projection maps x to be the value of the longitude and y to be the value of the latitude, and therefore is sometimes called the latitude/longitude or lat/lon(g) projection or is said to be “unprojected”. Despite sometimes being called “unprojected”, it is actually projected.

When the {\displaystyle \varphi _{1}} is not zero, such as Marinus's {\displaystyle \varphi _{1}=36},[3] or Ronald Miller's {\displaystyle \varphi _{1}=(37.5,43.5,50.5)},[4] the projection can portray particular latitudes of interest at true scale.

While a projection with equally spaced parallels is possible for an ellipsoidal model, it would no longer be equidistant because the distance between parallels on an ellipsoid is not constant. More complex formulae can be used to create an equidistant map whose parallels reflect the true spacing.

Reverse

{\displaystyle {\begin{aligned}\lambda &={\frac {x}{R\cos \varphi _{1}}}+\lambda _{0}\\\varphi &={\frac {y}{R}}+\varphi _{0}\end{aligned}}}

Alternative names

In spherical panorama viewers, usually:

  • {\displaystyle \lambda } is called "yaw";[5]
  • {\displaystyle \varphi } is called "pitch";[6]

where both are defined in degrees.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值