约瑟夫环问题

约瑟夫环问题 

  约瑟夫环(Josephus)问题是由古罗马的史学家约瑟夫(Josephus)提出的,他参加并记录了公元66—70年犹太人反抗罗马的起义。约瑟夫作为一个将军,设法守住了裘达伯特城达47天之久,在城市沦陷之后,他和40名死硬的将士在附近的一个洞穴中避难。在那里,这些叛乱者表决说“要投降毋宁死”。于是,约瑟夫建议每个人轮流杀死他旁边的人,而这个顺序是由抽签决定的。约瑟夫有预谋地抓到了最后一签,并且,作为洞穴中的两个幸存者之一,他说服了他原先的牺牲品一起投降了罗马。 
  约瑟夫环问题的具体描述是:设有编号为1,2,……,n的n(n>0)个人围成一个圈,从第1个人开始报数,报到m时停止报数,报m的人出圈,再从他的下一个人起重新报数,报到m时停止报数,报m的出圈,……,如此下去,直到所有人全部出圈为止。当任意给定n和m后,设计算法求n个人出圈的次序。  



C代码 
  1. #include <stdio.h>  
  2. main()  
  3. {  
  4.    int n, m, i, s=0;  
  5.    printf ("N M = "); scanf("%d%d", &n, &m);  
  6.    for (i=2; i<=n; i++) s=(s+m)%i;  
  7.    printf ("The winner is %d/n", s+1);  
  8. }/*运用了一点数学策略 N=8 M=3 幸存为7 ;少于3的时候还可以数,因为为一个环;从他的下一个人起重新报数*/  

已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围。从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列。 

   这个就是约瑟夫环问题的实际场景,有一种是要通过输入n,m,k三个正整数,来求出列的序列。这个问题采用的是典型的循环链表的数据结构,就是将一个链表的尾元素指针指向队首元素。 p->link=head 

   解决问题的核心步骤: 
       1.建立一个具有n个链结点,无头结点的循环链表 
       2.确定第1个报数人的位置 
       3.不断地从链表中删除链结点,直到链表为空 

void JOSEPHUS(int n,int k,int m) //n为总人数,k为第一个开始报数的人,m为出列者喊到的数 

    /* p为当前结点  r为辅助结点,指向p的前驱结点  list为头节点*/ 
    LinkList p,r,list; 

    /*建立循环链表*/ 
    for(int i=0,i<n,i++) 
    { 
        p=(LinkList)malloc(sizeof(LNode)); 
        p->data=i; 
        if(list==NULL) 
            list=p; 
        else 
            r->link=p; 
        r=p; 
    } 
    p>link=list; /*使链表循环起来*/ 
    p=list; /*使p指向头节点*/ 

    /*把当前指针移动到第一个报数的人*/ 
    for(i=0;i<k;i++) 
    { 
        r=p; 
        p=p->link; 
    } 

    /*循环地删除队列结点*/ 
    while(p->link!=p) 
    { 
        for(i=0;i<m;i++) 
        { 
            r=p; 
            p=p->link; 
        } 
        r->link=p->link; 
        printf("被删除的元素:%4d ",p->data); 
        free(p); 
        p=r->link; 
    } 
    printf("/n最后被删除的元素是:%4d",P->data); 


证明: 
Josephus(约瑟夫)问题的数学方法(转)约瑟夫 (转) 

     无论是用链表实现还是用数组实现都有一个共同点:要模拟整个 
游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n 
,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间 
内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号, 
而不是要读者模拟整个过程。因此如果要追求效率,就要打破常规, 
实施一点数学策略。 
为了讨论方便,先把问题稍微改变一下,并不影响原意: 
问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出 
,剩下的人继续从0开始报数。求胜利者的编号。 
我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组 
成了一个新的约瑟夫环(以编号为k=m%n的人开始): 
   k   k+1   k+2   ... n-2, n-1, 0, 1, 2, ... k-2 
并且从k开始报0。 
现在我们把他们的编号做一下转换: 
k      --> 0 
k+1    --> 1 
k+2    --> 2 
... 
... 
k-2    --> n-2 
k-1    --> n-1 
变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这 
个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x 
变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相 
信大家都可以推出来:x‘=(x+k)%n 
如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就 
行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是 
一个倒推问题!好了,思路出来了,下面写递推公式: 
令f表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然 
是f[n] 
递推公式 
f[1]=0; 
f=(f[i-1]+m)%i;   (i>1) 
有了这个公式,我们要做的就是从1-n顺序算出f的数值,最后结 
果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1 
由于是逐级递推,不需要保存每个f,程序也是异常简单: 
#include <stdio.h> 
main() 

   int n, m, i, s=0; 
   printf ("N M = "); scanf("%d%d", &n, &m); 
   for (i=2; i<=n; i++) s=(s+m)%i; 
   printf ("The winner is %d/n", s+1); 

这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高 
。算n,m等于一百万,一千万的情况不是问题了。可见,适当地运用 
数学策略,不仅可以让编程变得简单,而且往往会成倍地提高算法执 
行效率。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值