数据库索引

一,InnoDB的索引

InnoDB的索引有两类索引,聚集索引(Clustered Index)与普通索引(Secondary Index)。

 

InnoDB的每一个表都会有聚集索引:

(1)如果表定义了PK,则PK就是聚集索引;

(2)如果表没有定义PK,则第一个非空unique列是聚集索引;

(3)否则,InnoDB会创建一个隐藏的row-id作为聚集索引;

 

索引的结构是B+树,这里不展开B+树的细节,说几个结论:

(1)在索引结构中,非叶子节点存储key,叶子节点存储value;

(2)聚集索引,叶子节点存储行记录(row);

画外音:所以,InnoDB索引和记录是存储在一起的,而MyISAM的索引和记录是分开存储的。

(3)普通索引,叶子节点存储了PK的值;

画外音:

所以,InnoDB的普通索引,实际上会扫描两遍:

第一遍,由普通索引找到PK;

第二遍,由PK找到行记录;

索引结构,InnoDB/MyISAM的索引结构,如果大家感兴趣,未来撰文详述。

 

 

五、总结

(1)InnoDB的索引与行记录存储在一起,这一点和MyISAM不一样;

(2)InnoDB的聚集索引存储行记录,普通索引存储PK,所以普通索引要查询两次;

(3)记录锁锁定索引记录;

(4)间隙锁锁定间隔,防止间隔中被其他事务插入;

(5)临键锁锁定索引记录+间隔,防止幻读;

 

二、hash和Btree

Hash索引

 

所谓Hash索引,当我们要给某张表某列增加索引时,将这张表的这一列进行哈希算法计算,得到哈希值,排序在哈希数组上。所以Hash索引可以一次定位,其效率很高,而Btree索引需要经过多次的磁盘IO,但是innodb和myisam之所以没有采用它,是因为它存在着好多缺点:

1、因为Hash索引比较的是经过Hash计算的值,Hash索引仅仅能满足“=”,“IN”,“<=>”查询,不能使用范围查询

2、每次都要全表扫描

(由于不同索引键存在相同Hash值,所以即使满足某个Hash键值的数据的记录条数,也无法从Hash索引中直接完成查询,还是要通过访问表中的实际数据进行比较,并得到相应的结果)

3、由于哈希值是按照顺序排列的,但是哈希值映射的真正数据在哈希表中就不一定按照顺序排列,所以无法利用Hash索引来加速任何排序操作

(Hash值的大小关系并不一定和Hash运算前的键值完全一样,所以数据库无法利用索引的数据来避免任何排序运算)

4、对于联合索引中的多个列,Hash是要么全部使用,要么全部不使用,并不支持BTree支持的联合索引的最优前缀,也就是联合索引的前面一个或几个索引键进行查询时,Hash索引无法被利用。

(因为组合索引在计算哈希值的时候是一起计算的)

5、当哈希值大量重复且数据量非常大时,其检索效率并没有Btree索引高的。

 

Btree索引

至于Btree索引,它是以B+树为存储结构实现的。

但是Btree索引的存储结构在Innodb和MyISAM中有很大区别。

在MyISAM中,我们如果要对某张表的某列建立Btree索引的话,如图:

 

 

所以我们经常会说MyISAM中数据文件和索引文件是分开的。

因此MyISAM的索引方式也称为非聚集,Innodb的索引方式称为聚集索引。

因此当我们根据Btree索引去搜索的时候,若key存在,在data域找到其地址,然后根据地址去表中查找数据记录。

 

至于Innodb它跟上面又有很大不同,它的叶子节点存储的并不是表的地址,而是数据

 

 

 

 

我们可以看到这里并没有将地址放入叶子节点,而是直接放入了对应的数据,这也就是我们平常说到的,Innodb的索引文件就是数据文件,

 

那么对于Innodb的辅助索引结构跟主索引也相差很多,如图:

 

 

 

我们可以发现,这里叶子节点存储的是主键的信息,所以我们在利用辅助索引的时候,检索到主键信息,然后再通过主键去主索引中定位表中的数据,这就可以说明Innodb中主键之所以不宜用过长的字段,由于所有的辅助索引都包含主索引,所以很容易让辅助索引变得庞大。

 

 

我们还可以发现:在Innodb中尽量使用自增的主键,这样每次增加数据时只需要在后面添加即可,非单调的主键在插入时会需要维持B+tree特性而进行分裂调整,十分低效。

Btree索引中的最左匹配原则:

Btree是按照从左到右的顺序来建立搜索树的。比如索引是(name,age,sex),会先检查name字段,如果name字段相同再去检查后两个字段。

所以当传进来的是后两个字段的数据(age,sex),因为建立搜索树的时候是按照第一个字段建立的,所以必须根据name字段才能知道下一个字段去哪里查询。

所以传进来的是(name,sex)时,首先会根据name指定搜索方向,但是第二个字段缺失,所以将name字段正确的都找到后,然后才会去匹配sex的数据。

 

MyISAM和InnoDB都使用B+树来实现索引:

  • MyISAM的索引与数据分开存储

  • MyISAM的索引叶子存储指针,主键索引与普通索引无太大区别

  • InnoDB的聚集索引和数据行统一存储

  • InnoDB的聚集索引存储数据行本身,普通索引存储主键

  • InnoDB一定有且只有一个聚集索引

  • InnoDB建议使用趋势递增整数作为PK,而不宜使用较长的列作为PK

参考

https://blog.csdn.net/u014307117/article/details/47325091#commentBox

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值