新征程,新起点

来公司已经是第三个星期了,已经真的从学生变成了上班族,我不知道这对我是好还是差,但是不管怎么样,我会努力过好每一天,就像我的大学生活那样,其实我总相信一句话:为什么我对生活记忆深刻,因为我认真得过每分每秒(其实呢,这句话也不知道是谁说的,我估计是我原创吧)。

其实在去年7月份到10月份的时候我就已经在这个城市实习过了,那时候是在1号楼的某个公司,现在呢到了28号楼,难道命运决定了我终将在上海开始人生中的第一段职业旅程?

首先我得吐槽下公交某12路,晚上下班回去,别的公交4、5辆过去了,它还没有来,来了之后也带不走任何一个人或者很少的人,唉,坐公交就是挤啊,但是没钱没车,只能这样了。

离开了学校,再也没有人逼着你学习了(当然了我自己知道努力学习,自恋了点,呵呵),多的是自己去逼着自己学习,每天得做完leader分配的任务,做不完就得加班,我都已经连续4天加班了。但是今天同事跟我说不加班到9点10点的算什么加班,这么掐指一算,我没有加班过。日子虽然苦了点,但是我喜欢这样的生活,因为每天做的是自己喜欢做的事情。

好久好久没有写自己的感慨了,应该是很乱的吧。为什么叫新征程、新起点呢,因为在大学里得到的所有的一切都不算了,你现在站在跟别人同样的起点上,大家都是一样,都是一起来的公司,所以在这条路上,我们大家都是在一个新的起点上。

还是说说我每天的生活吧。我租在公司的附近,说远不远,说近也不近,大概在百度地图上看了下有3点几公里吧,我跟我的同事租的三室一厅,说是同事,其实一个是我的高中最好的哥们还有个他的大学同班同学(很多人都很羡慕我们这样的,因为这样一起生活会很开心,有共同语言),我们的房子呢,还算可以吧,家具、家电都是齐全的。每天早上准时都是7点起床(当然除了周末),然后洗漱完毕就走去公交站台等车了,等车时间取决与运气吧,有时候直接上,有时候就要等好久。大概7点50到公司的园区,去吃个早饭(基本每天豆浆油条)。然后就是上午的上班啦,11点半下班,但是我们都是11点多一点就去吃饭,一群人一起去,挺好挺开心的,园区食堂的饭菜不好吃,刚开始还感觉挺好,但是吃多了就没那胃口了,唉,是时候学着自己煮饭做菜了。吃过午饭休息一小时,这真是难得的一小时啊。醒了就是上班,做自己喜欢的coding或者写文档(话说写文档真是技术活,总是不符合leader要求,经常需要改,大概是我的技术不过关吧,需要继续努力)。下午5点多一点去吃个晚饭,然后回来继续加着不算加班的班,这样自己才能多学点东西,才能提高自己的技术,嗯,我是这么认为的。

上面说的都是周一到周五的上班生活,我觉得有必要说下周末的生活,每周五是一周内最开心的一天,因为接下来会有两天的周末。每周五会早早得下班(不加班),然后回来玩游戏或者看电影,基本不出去玩,除了吃饭就是睡觉、玩游戏、看电影,标准的屌丝生活啊。这也是我要开始写生活类博客的原因,不能再这么过下去了,要不然真的成同学说的那样变成了机器,不会跟人交流了。所以呢,在接下去的周末,我需要出去转转,呼吸下外面新鲜的空气,不再做宅男,这样应该也对身体比较好吧。

好像跑题了,不管怎么样,就这么写了,反正是写给自己看的。挺喜欢一句话的:你必须非常努力,才能看起来毫不费力。所以我要时时刻刻努力,成功不是随便来的,必须量变产生质变。

最后总结下吧,爱代码,爱生活,更爱老婆,新征程、新起点,加油吧,走出自己的风采!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值