3776. 整数集合的并集(不用vector的做法)

3776. 整数集合的并集

【问题描述】

给定n个整数集合Si = { x | xÎZ, ai≤x≤bi },Z为整数集合,ai, bi为整数且ai≤bi,求|∪Si|,即这n个集合的并集中的元素个数。

【输入形式】

第一行为正整数n,2≤n≤100,接下来有n行,每行为两个整数ai, bi。

【输出形式】

输出一行,为求得的答案。

【样例输入】

4

1 2

2 5

3 8

9 12

【样例输出】

12

思路:

区间合并模板题
先排序,然后区间对比就可以了
看注解

#include<bits/stdc++.h>
using namespace std;

struct node{
	int l,r;//区间的左left右right端点 
	bool operator<(const node&x)const {//可以重载小于运算符来替换cmp函数
		if(l!=x.l)return l<=x.l;//左端点不同  左端点小的排在前面 
		return r<=x.r;//左端点相同  右端点小的排在前面 
	}
}g[110],ans[110];//输入区间集合 和 答案区间集合 
int idx;//答案区间集合的下标  也是答案区间集合的区间个数
int n; 

signed main()
{
	cin>>n;
	for(int i=0;i<n;i++)
	{
		int l,r;
		cin>>l>>r;
		g[i]={l,r};
	}
	sort(g,g+n);
	int l=g[0].l;
	int r=g[0].r;
	for(int i=1;i<n;i++)
	{
		if(g[i].l>r)//case1  2个区间没有交集 l,r就是一个独立的区间
		{
			ans[idx++]={l,r};
			l=g[i].l;
			r=g[i].r;
		}
		else r=max(g[i].r,r);
		/*case2 2个区间有交集 只需要取最右边的端点和最左边的端点 
		左端点因为排序一定是l  右端点则是2个区间的右端点最大值*/
	}
	ans[idx++]={l,r};//还有1个区间没有装入ans
	int res=0;//结果
	for(int i=0;i<idx;i++)
	{
//		cout<<ans[i].l<<" "<<ans[i].r<<endl;
		res+=ans[i].r-ans[i].l+1;
	}
	cout<<res<<endl;
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值