利用支持向量回归(Support Vector Regression, SVR)进行回归的原理与python代码

该文介绍了支持向量回归(SVR)的基本原理,它是一种基于SVM的回归方法,具有高准确度和泛化能力。文中提供了一个使用Python的scikit-learn库构建和训练SVR模型的示例,数据集经过正弦函数处理并添加噪声。模型训练后,展示了预测结果。文章强调在实际应用中需要调整超参数以优化模型性能。
摘要由CSDN通过智能技术生成

在这里插入图片描述


一、支持向量回归(Support Vector Regression, SVR)原理?

  1. 支持向量回归(Support Vector Regression,
    SVR)是一种基于支持向量机(SVM)的回归方法,其原理与线性回归相似,但是具有更高的准确度和泛化能力。
  2. SVR通过在二维空间中找到一个最优超平面来实现对回归过程的建模。由于这个最优超平面仅考虑到了在训练集周围边缘的点,使得模型对数据点的过拟合现象进行有效地避免。同时,根据再投影误差作为惩罚项的复杂度控制参数可以很好地调节回归模型的灵活性。

二、实现回归的python程序

代码如下(示例):

# 导入需要的库
import numpy as np
from sklearn.svm import SVR
import matplotlib.pyplot as plt

# 构造数据集
X = np.sort(5 * np.random.rand(80, 1), axis=0)
y = np.sin(X).ravel()

# 加入噪声
y[::5] += 3 * (0.5 - np.random.rand(16))

# 训练模型
model = SVR(kernel='rbf', C=100, gamma=0.1, epsilon=.1)
model.fit(X, y)

# 在图表上展示结果
plt.scatter(X, y, label='data', color='red')
plt.plot(X, model.predict(X), label='SVR', color='blue')
plt.legend()
plt.show()


总结

  1. 在这个简单的示例中,我们首先构造了一个一维的随机数据集,并根据正弦函数模拟回归过程。接着,在数据集中加入了一定的噪声,并使用SVR训练了回归模型。最后,我们将实际数据点和预测结果展示在了同一张图表上。
  2. 需要注意的是,这个简单的示例代码并没有包含优化超参数的操作,因此在实际应用中还需要进一步地调整模型参数(如C、gamma和epsilon等)来避免过度拟合或欠拟合情况,以获得更好的性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值