F1得分是精确率(Precision)和召回率(Recall)的调和平均数,常用于评估二分类模型的性能。在数学上,F1得分的计算公式如下:
首先,定义精确率和召回率:
精确率 (Precision) = TP / (TP + FP)
召回率 (Recall) = TP / (TP + FN)
F1得分 (F1 Score) = 2 * (精确率 * 召回率) / (精确率 + 召回率)
将精确率和召回率的公式代入F1得分的公式
中,我们得到:
F 1 S c o r e = 2 ∗ ( T P / ( T P + F P ) ) ∗ ( T P / ( T P + F N ) ) / ( T P / ( T P + F P ) + T P / ( T P + F N ) ) F1 Score = 2 * (TP / (TP + FP)) * (TP / (TP + FN)) / (TP / (TP + FP) + TP / (TP + FN)) F1Score=2∗(TP/(TP+FP))∗(TP/(TP+FN))/(TP/(TP+FP)+TP/(TP+FN))
简化后得到:
F 1 S c o r e = 2 ∗ T P / ( 2 ∗ T P + F P + F N ) F1 Score = 2 * TP / (2 * TP + FP + FN) F1Score=2∗TP/(2∗TP+FP+FN)
这个公式可以用来计算给定一组预测结果的F1得分,从而评估模型的性能。F1得分越高,说明模型的性能越好
。需要注意的是,F1得分同时考虑了精确率和召回率,因此能够更全面地评估模型的性能。