L2-018 多项式A除以B (25 分)
这仍然是一道关于A/B的题,只不过A和B都换成了多项式。你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数。
输入格式:
输入分两行,每行给出一个非零多项式,先给出A,再给出B。每行的格式如下:
N e[1] c[1] ... e[N] c[N]
其中N是该多项式非零项的个数,e[i]是第i个非零项的指数,c[i]是第i个非零项的系数。各项按照指数递减的顺序给出,保证所有指数是各不相同的非负整数,所有系数是非零整数,所有整数在整型范围内。
输出格式:
分两行先后输出商和余,输出格式与输入格式相同,输出的系数保留小数点后1位。同行数字间以1个空格分隔,行首尾不得有多余空格。注意:零多项式是一个特殊多项式,对应输出为0 0 0.0。但非零多项式不能输出零系数(包括舍入后为0.0)的项。在样例中,余多项式其实有常数项-1/27,但因其舍入后为0.0,故不输出。
输入样例:
4 4 1 2 -3 1 -1 0 -1
3 2 3 1 -2 0 1
输出样例:
3 2 0.3 1 0.2 0 -1.0
1 1 -3.1
多项式除法:
除法的一种类型,俗称「长除」。适用于整式除法、小数除法、多项式除法(即因式分解)等较重视计算过程和商数的除法,过程中兼用了乘法和减法。是代数中的一种算法,用一个同次或低次的多项式去除另一个多项式。是常见算数技巧长除法的一个推广版本。它可以很容易地手算,因为它将一个相对复杂的除法问题分解成更小的一些问题。
一般步骤
(1)把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐.
(2)用被除式的第一项除以除式第一项,得到商式的第一项.
(3)用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项,把不相等的项结合起来.
(4)把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式。若余式为零,说明这个多项式能被另一个多项式整除

q(x)商 f(x)被除数 g(x)除数 r(x)余
AC Code:
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <vector>
#include <set>
#include <map>
#include <cstring>
#include <string>
#define Mod 1000000007;
#define INF 0x3f3f3f3f;
using namespace std;
static const int MAX_N = 1e4 + 5;
double c1[MAX_N], c2[MAX_N], c3[MAX_N];
int Nonnegative_Num(double a[], int e) { //判断多项式非0项数
int ret = 0;
for (int i = e; i >= 0; --i)
if (fabs(a[i]) >= 0.05) ret++;
return ret;
}
void solve(double a[], int e) { //打印多项式
printf("%d", Nonnegative_Num(a, e));
if (Nonnegative_Num(a, e) == 0) printf(" 0 0.0"); //零多项式
else {
for (int i = e; i >= 0; --i) {
if (fabs(a[i]) >= 0.05) printf(" %d %.1f", i, a[i]);
}
}
putchar('\n');
}
int main() {
int n;
while (scanf("%d", &n) != EOF) {
int maxe1, maxe2; //A、B的最大指数
for (int i = 0; i < n; ++i) {
int e;
double c;
scanf("%d%lf", &e, &c);
if (i == 0) maxe1 = e;
c1[e] = c; //指数为e,系数为c
}
int m;
scanf("%d", &m);
for (int i = 0; i < m; ++i) {
int e;
double c;
scanf("%d%lf", &e, &c);
if (i == 0)maxe2 = e;
c2[e] = c;
}
int d = maxe1 - maxe2;
while (maxe2 <= maxe1) {
double v = c1[maxe1] / c2[maxe2];
c3[maxe1 - maxe2] = v; //商
for (int i = maxe1, j = maxe2; i >= 0 && j >= 0; --j, --i) {
c1[i] -= c2[j] * v; //余
}
while (fabs(c1[maxe1]) < 0.05) --maxe1; //四舍五入为0的项去掉
}
solve(c3, d);
solve(c1, maxe1);
}
return 0;
}
4888

被折叠的 条评论
为什么被折叠?



