无人机航拍桥梁巡检数据集 桥梁病害腐蚀 钢筋裸露 桥梁裂缝 桥梁制备入侵图像数据集

桥梁计算机视觉数据集核心信息表

类别
Classes (22) 类别(22)
Break
断裂
Broken Drain
破损的排水口
Concrete Leaching
混凝土溶蚀
Control Point
控制点
Corrosion
腐蚀
Crack
裂缝
Crack-Detection
裂缝检测
Deep Crack
深度裂缝
Efflorescence
泛碱
Embankment Erosion
堤岸侵蚀
Expansion Joint
伸缩缝
Exposed Rebar
外露钢筋
Faunal Biodegradation
动物生物降解
Formwork Niche
模板凹槽
Guardrail Damaged
护栏损坏
Infiltration
渗透
Pothole Asphalt
坑洼沥青
Rutting Pavement
车辙路面
Spalling
剥落
Staining
污渍
Steel Corrosion
钢筋锈蚀
Vegetation
植被

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

信息类别具体内容
数据集类别实例分割类计算机视觉数据集,含22个细分类别,涵盖桥梁病害、构件等核心检测对象
数据数量包含25999张图像(约26k张),为模型训练提供充足样本支撑
数据格式以图像文件为主要格式,适配计算机视觉领域实例分割任务的模型训练与测试需求
核心应用价值可用于桥梁结构安全监测,实现断裂、裂缝、腐蚀等病害自动识别,辅助制定养护方案,提升桥梁维护效率与安全性

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

该数据集的类别围绕桥梁检测场景精准划分,22个类别覆盖多维度需求。既有断裂、裂缝、腐蚀等典型病害类型,也包含控制点、伸缩缝等桥梁基础构件,还涉及堤岸侵蚀、植被等周边影响因素,能全面满足桥梁检测的细分需求。

从数量来看,25999张图像的规模具备显著优势。这样的体量可避免模型训练时因样本不足导致的过拟合问题,让模型在不同桥梁场景、不同病害形态下都能保持较好的识别稳定性,为实际应用打下基础。

图像格式的选择贴合计算机视觉技术常规应用场景。无需额外格式转换,可直接接入主流实例分割模型的训练流程,降低技术使用门槛,让研究人员或工程团队能快速将数据集用于桥梁病害检测相关算法开发与优化。

无人机航拍裂缝检测与道路损坏评估数据集 一、基础信息 数据集名称:无人机航拍裂缝检测与道路损坏评估数据集 图片数量: - 训练集:5,043张航拍图片 - 验证集:480张航拍图片 - 测试集:240张航拍图片 分类类别: - Block crack(块状裂缝):大面积不规则的混凝土表面裂缝 - D00(纵向裂缝):沿道路纵向延伸的线性裂缝 - D10(横向裂缝):垂直于道路方向的裂缝 - D20(网状裂缝):多方向交叉形成的龟裂形态 - D40(修补区域):已修复路面的标记区域 - Repair(修复痕迹):人工修补后的表面痕迹 标注格式: - YOLO格式,包含目标边界框坐标及类别标签 - 数据来源:无人机航拍的中国道路场景图像 二、适用场景 基础设施智能巡检: 支持道路、桥梁等混凝土结构的自动化裂缝检测系统开发,提升市政设施维护效率 土木工程AI应用: 用于建筑质量评估系统开发,通过裂缝类型识别预测结构安全风险 无人机行业应用: 为无人机巡检解决方案提供核心数据支撑,实现空中巡检-自动识别-损伤评估闭环 学术研究领域: 适用于计算机视觉在工程检测领域的研究,支持目标检测、损伤量化等方向论文实验 工程教育培训: 作为道路病害识别教学资源,帮助学员掌握典型裂缝类型的视觉特征 三、数据集优势 专业场景覆盖: 包含6类道路损坏特征,覆盖从原始裂缝到修复痕迹的完整生命周期数据 航拍视角特性: 全部数据通过无人机采集,提供真实空中巡检视角,包含不同高度、光照条件下的图像 高实用性标注: 严格遵循道路检测标准定义类别,YOLO格式可直接用于工业级模型训练 复杂形态覆盖: 包含细长型纵向裂缝(D00)、密集网状裂缝(D20)等具有挑战性的检测目标 实际应用验证: 数据来源于中国真实道路场景,已成功应用于多个基础设施智慧巡检项目
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值