桥梁计算机视觉数据集核心信息表
类别
Classes (22) 类别(22)
Break
断裂
Broken Drain
破损的排水口
Concrete Leaching
混凝土溶蚀
Control Point
控制点
Corrosion
腐蚀
Crack
裂缝
Crack-Detection
裂缝检测
Deep Crack
深度裂缝
Efflorescence
泛碱
Embankment Erosion
堤岸侵蚀
Expansion Joint
伸缩缝
Exposed Rebar
外露钢筋
Faunal Biodegradation
动物生物降解
Formwork Niche
模板凹槽
Guardrail Damaged
护栏损坏
Infiltration
渗透
Pothole Asphalt
坑洼沥青
Rutting Pavement
车辙路面
Spalling
剥落
Staining
污渍
Steel Corrosion
钢筋锈蚀
Vegetation
植被




| 信息类别 | 具体内容 |
|---|---|
| 数据集类别 | 实例分割类计算机视觉数据集,含22个细分类别,涵盖桥梁病害、构件等核心检测对象 |
| 数据数量 | 包含25999张图像(约26k张),为模型训练提供充足样本支撑 |
| 数据格式 | 以图像文件为主要格式,适配计算机视觉领域实例分割任务的模型训练与测试需求 |
| 核心应用价值 | 可用于桥梁结构安全监测,实现断裂、裂缝、腐蚀等病害自动识别,辅助制定养护方案,提升桥梁维护效率与安全性 |





该数据集的类别围绕桥梁检测场景精准划分,22个类别覆盖多维度需求。既有断裂、裂缝、腐蚀等典型病害类型,也包含控制点、伸缩缝等桥梁基础构件,还涉及堤岸侵蚀、植被等周边影响因素,能全面满足桥梁检测的细分需求。
从数量来看,25999张图像的规模具备显著优势。这样的体量可避免模型训练时因样本不足导致的过拟合问题,让模型在不同桥梁场景、不同病害形态下都能保持较好的识别稳定性,为实际应用打下基础。
图像格式的选择贴合计算机视觉技术常规应用场景。无需额外格式转换,可直接接入主流实例分割模型的训练流程,降低技术使用门槛,让研究人员或工程团队能快速将数据集用于桥梁病害检测相关算法开发与优化。
895

被折叠的 条评论
为什么被折叠?



