stylegan-v2 报错 error: #error "C++ versions less than C++11 are not supported.

本文介绍了一种解决StyleGAN-v2在运行过程中遇到的C++版本过低错误的方法。通过修改dnnlib/tflib/custom_ops.py文件中的编译命令,加入C++11标准支持,成功解决了该问题。
摘要由CSDN通过智能技术生成

运行stylegan-v2报错:

error: #error "C++ versions less than C++11 are not supported.

 

解决方法:

打开   dnnlib/tflib/custom_ops.py的 修改第64行:

将 cmd = 'nvcc ' + opts.strip()

改为:cmd = 'nvcc --std=c++11 -DNDEBUG ' + opts.strip() 

 

### 解析 Spark 配置过程中 spark-shell 环境启动时遇到的 JNI 错误 当尝试启动 `spark-shell` 并收到错误提示 `Error: A JNI error has occurred, please check your installation and try again` 时,通常是因为 Java 运行时环境(JRE)与编译后的类文件版本不兼容。 具体来说,如果看到异常信息类似于: ``` Exception in thread "main" java.lang.UnsupportedClassVersionError: org/springframework/boot/loader/JarLauncher has been compiled by a more recent version of the Java Runtime (class file version 61.0), this version of the Java Runtime only recognizes class file versions up to 52.0 ``` 这表明当前使用的 JRE 版本过低,无法识别由较新版本 JDK 编译过的字节码文件[^1]。对于上述情况中的 `class file version 61.0` 对应的是 Java 17,而 `up to 52.0` 则对应于 Java 8。 #### 解决方案概述 为了确保所有组件能够正常工作,建议统一各个依赖项所使用的 Java 版本。考虑到 Spark 和 Spring Boot CLI 的需求,推荐采用如下组合来避免此类问题的发生: - **Java Development Kit (JDK)**: 使用 JDK 11 或更高版本。 - **Scala**: 如果使用特定版本的 Spark,则需确认其支持的 Scala 版本;例如,Spark 3.x 支持 Scala 2.12 及以上版本[^2]。 - **Hadoop/Spark 安装包**: 应选择与选定的 Scala 版本相匹配的二进制分发版。 此外,还需注意检查系统中是否存在多个不同版本的 JDK 安装实例,并通过设置环境变量如 `JAVA_HOME` 来指定要使用的唯一 JDK 路径,从而防止因多版本共存引发冲突[^3]。 #### 实际操作指南 以下是调整环境的具体步骤: 1. 卸载不必要的旧版 JDK; 2. 下载并安装最新稳定版的 OpenJDK 11 或更新版本; 3. 设置或修改系统的 `JAVA_HOME` 环境变量指向新的 JDK 安装目录; 4. 更新命令行工具路径以优先调用新版 JDK 提供的可执行程序; 5. 根据实际项目需求重新下载适合该 Java 版本的 Hadoop/Spark 发布版本; 6. 测试配置更改是否有效,即再次尝试启动 `spark-shell` 查看是否有相同错误重现。 ```bash export JAVA_HOME=/path/to/newly_installed_jdk_directory echo $JAVA_HOME java -version ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值