查找算法:

1.线性查找

从数组的第一个元素开始查找,并将其与查找值比较,如果相等则停止,否则继续下一个元素查找,直到找到匹配值。

注意:要求被查找的数组中的元素是无序的、随机的。

比如,对一个整型数组的线性查找代码:

static boolean linearSearch(int target, int[] array)	{
		// 遍历整个数组,并分别将每个遍历元素与查找值对比
		for (int i = 0; i < array.length; i++){
			if (array[i] == target){
				return true;
			}
		}
		
		return false;
	}

分析该算法的三种情况:

a.最佳情况

要查找的值在数组的第一个位置。也就是说只需比较一次就可达到目的,因此最佳情况的大O表达式为:O(1)

b.最差情况

要查找的值在数组的末尾或者不存在,则对大小为n的数组必须比较n次,大O表达式为:O(n)

c.平均情况

估计会执行:(n + (n - 1) + (n - 2) + .. + 1)/n = (n + 1) / 2次比较,复杂度为O(n)

2.二分查找

假设被查找数组中的元素是升序排列的,那我们查找值时,首先会直接到数组的中间位置(数组长度/2),并将中间值和查找值比较,如果相等则返回,否则,如果当前元素值小于查找值,则继续在数组的后面一半查找(重复上面过程);如果当前元素值大于查找值,则继续在数组的前面一半查找,直到找到目标值或者无法再二分数组时停止。

注意:二分查找只是针对有序排列的各种数组或集合

代码:

static boolean binarySearch(int target, int[] array){
	int front = 0;
	int tail = array.length - 1;
	
	// 判断子数组是否能再次二分
	while (front <= tail){
		// 获取子数组的中间位置,并依据此中间位置进行二分
		int middle = (front + tail) / 2;
		
		if (array[middle] == target){
			return true;
		}
		else if (array[middle] > target){
			tail = middle - 1;
		}
		else{
			front = middle + 1;
		}
	}
	
	return false;
}

最佳情况:

中间值为查找值,只需比较一次,复杂度为O(1)

最差、平均:

当我们对一个数组执行二分查找时,最多的查找次数是满足n < 2^k的最小整数k,比如:当数组长度为20时,那么使用二分法的查找次数最多为5次,即:2^5 > 20因此可以得出二分法的最差及平均情况的复杂度为O(logn)

分析:123456789

在上面数组中查找7需要比较多少次?

查找2.5需要比较多少次?(假设存储的数值都是双精度数据类型)

显然,对于一个有序数组或集合,使用二分查找会比线性查找更加有效!但是注意,虽然二分法效率更高,但使用的同时系统也会增加额外的开销,为什么?


1.算法是程序的灵魂,优秀的程序在对海量数据处理时,依然保持高速计算,就需要高效的数据结构和算法支撑。2.网上数据结构和算法的课程不少,但存在两个问题:1)授课方式单一,大多是照着代码念一遍,数据结构和算法本身就比较难理解,对基础好的学员来说,还好一点,对基础不好的学生来说,基本上就是听天书了2)说是讲数据结构和算法,但大多是挂羊头卖狗肉,算法讲的很少。 本课程针对上述问题,有针对性的进行了升级 3)授课方式采用图解+算法游戏的方式,让课程生动有趣好理解 4)系统全面的讲解了数据结构和算法, 除常用数据结构和算法外,还包括程序员常用10大算法:二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法、马踏棋盘算法。可以解决面试遇到的最短路径、最小生成树、最小连通图、动态规划等问题及衍生出的面试题,让你秒杀其他面试小伙伴3.如果你不想永远都是代码工人,就需要花时间来研究下数据结构和算法。教程内容:本教程是使用Java来讲解数据结构和算法,考虑到数据结构和算法较难,授课采用图解加算法游戏的方式。内容包括: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题、算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、多路查找树(B树B+树和B*树)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法。学习目标:通过学习,学员能掌握主流数据结构和算法的实现机制,开阔编程思路,提高优化程序的能力。
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页