小兔的棋盘
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 8187 Accepted Submission(s): 4335
Problem Description
小兔的叔叔从外面旅游回来给她带来了一个礼物,小兔高兴地跑回自己的房间,拆开一看是一个棋盘,小兔有所失望。不过没过几天发现了棋盘的好玩之处。从起点(0,0)走到终点(n,n)的最短路径数是C(2n,n),现在小兔又想如果不穿越对角线(但可接触对角线上的格点),这样的路径数有多少?小兔想了很长时间都没想出来,现在想请你帮助小兔解决这个问题,对于你来说应该不难吧!
Input
每次输入一个数n(1<=n<=35),当n等于-1时结束输入。
Output
对于每个输入数据输出路径数,具体格式看Sample。
Sample Input
1 3 12 -1
Sample Output
1 1 2 2 3 10 3 12 416024卡特兰数又称卡塔兰数,英文名Catalan number,是 组合数学 中一个常出现在各种计数问题中出现的 数列 。由以 比利时 的数学家欧仁·查理·卡塔兰 (1814–1894)命名,其前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, ...令h(0)=1,h(1)=1,catalan数满足递推式[1]:
h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2)
例如:h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2
h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5
另类递推式[2]:
h(n)=h(n-1)*(4*n-2)/(n+1);
#include<iostream> using namespace std; int main() { __int64 a[36]; a[1]=1; for(int i=2;i<=35;i++) a[i]=a[i-1]*1.0/(i+1)*(4*i-2); //先除再乘,防止溢出。注意要乘1.0.。。。 int n,flag=0; while(scanf("%d",&n)&&n>0) { printf("%d %d %I64d\n",++flag,n,2*a[n]); } return 0; }