1 DataFrame基本介绍
一个dataFrame表示是一个二维的表, 一个二维表, 必然存在 行 列 表结构描述信息
表结构描述信息(元数据): StructType
字段: StructField
定义: 字段的名称, 字段的类型, 字段是否可以为Null
认为: 在一个StructType对象下, 由多个StructField组成的, 构建了一个完整的元数据信息
行: Row对象
列: Column对象
注意: dataFrame本质上就是一个RDD, 只是对RDD进行包装, 在其基础上添加schema元数据信息,从而处理结构化数据
2 DataFrame的构建方式
2.1通过RDD得到一个dataFrame
from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession
from pyspark.sql.types import *
import os
# 锁定远端环境, 确保环境统一
os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] &#

本文详细介绍了DataFrame的基础知识,包括其作为二维表的结构和元数据信息。内容涵盖DataFrame的构建方法,如从RDD转换、Pandas DataFrame转换、内部数据初始化以及通过读取外部文件创建DataFrame。通过学习,读者将深入理解Spark SQL中DataFrame的使用。
最低0.47元/天 解锁文章
572

被折叠的 条评论
为什么被折叠?



