含参量积分实战练习(1)

含参量积分实战练习(1)

小测: 试试看掌握了多少

在了解了含参量积分的连续性(极限和积分可交换的条件)、可微性(导数和积分型次序交换的条件)、可积性(积分顺序可以交换的条件)之后,试试看能否自己回答下面的问题吧!

正常积分:

  1. 如何对有理函数进行分解 x ( 1 + x 2 ) ( 1 + α x ) \frac{x}{(1+x^2)(1+\alpha x)} (1+x2)(1+αx)x

  2. φ ( α ) = ∫ 0 1 ln ⁡ ( 1 + α x ) 1 + x 2 d x \varphi(\alpha)=\int_0^1\frac{\ln(1+\alpha x)}{1+x^2}dx φ(α)=011+x2ln(1+αx)dx,判断其是否可导,如果可导计算 φ ′ ( α ) \varphi'(\alpha) φ(α)

  3. 如何求解 φ ( α ) = ∫ 0 1 ln ⁡ ( 1 + α x ) 1 + x 2 d x \varphi(\alpha)=\int_0^1\frac{\ln(1+\alpha x)}{1+x^2}dx φ(α)=011+x2ln(1+αx)dx α = 1 \alpha=1 α=1的值

    .

  4. 算导数 d d x ( x a + x 2 ) \frac{d}{dx}(\frac{x}{a+x^2}) dxd(a+x2x)

  5. 判断 ∫ 0 1 d x ∫ 0 1 x 2 − y 2 ( x 2 + y 2 ) 2 d y \int_0^1dx\int_0^1\frac{x^2-y^2}{(x^2+y^2)^2}dy 01dx01(x2+y2)2x2y2dy是否等于 ∫ 0 1 d y ∫ 0 1 x 2 − y 2 ( x 2 + y 2 ) 2 d x \int_0^1dy\int_0^1\frac{x^2-y^2}{(x^2+y^2)^2}dx 01dy01(x2+y2)2x2y2dx ,并解释原因

    .

  6. 计算定积分 ∫ 0 δ d x x 2 + c 2 \int_0^\delta \frac{dx}{x^2+c^2} 0δx2+c2dx

  7. 计算 lim ⁡ y → 0 ∫ 0 δ y x 2 + y 2 d x \lim\limits_{y\to0}\int_0^{\delta} \frac{y}{x^2+y^2}dx y0lim0δx2+y2ydx

  8. 研究函数 F ( y ) = ∫ 0 1 y f ( x ) x 2 + y 2 d x F(y)=\int_0^1\frac{yf(x)}{x^2+y^2}dx F(y)=01x2+y2yf(x)dx的连续性,其中 f ( x ) f(x) f(x)为[0,1]上正的连续函数

讲解:

如何对有理函数进行分解 x ( 1 + x 2 ) ( 1 + α x ) \frac{x}{(1+x^2)(1+\alpha x)} (1+x2)(1+αx)x

待定系数法、设 x ( 1 + x 2 ) ( 1 + α x ) = A x + B 1 + x 2 + C 1 + α x \frac{x}{(1+x^2)(1+\alpha x)}=\frac{Ax+B}{1+x^2}+\frac{C}{1+\alpha x} (1+x2)(1+αx)x=1+x2Ax+B+1+αxC ,** 不会的同学有必要复习下有理函数的分解(书上有)

总之算得结果: x ( 1 + x 2 ) ( 1 + α x ) = 1 1 + α 2 ( α + x 1 + x 2 − α 1 + α x ) \frac{x}{(1+x^2)(1+\alpha x)}=\frac{1}{1+\alpha^2}\left( \frac{\alpha +x}{1+x^2}-\frac{\alpha}{1+\alpha x} \right) (1+x2)(1+αx)x=1+α21(1+x2α+x1+αxα)

φ ( α ) = ∫ 0 1 ln ⁡ ( 1 + α x ) 1 + x 2 d x \varphi(\alpha)=\int_0^1\frac{\ln(1+\alpha x)}{1+x^2}dx φ(α)=011+x2ln(1+αx)dx,判断其是否可导,如果可导计算 φ ′ ( α ) \varphi'(\alpha) φ(α)

设被积函数 f ( α , x ) = ln ⁡ ( 1 + α x ) 1 + x 2 f(\alpha,x)=\frac{\ln(1+\alpha x)}{1+x^2} f(α,x)=1+x2ln(1+αx),该函数连续,且 f α ( α , x ) = x ( 1 + x 2 ) ( 1 + α x ) f_\alpha (\alpha,x)=\frac{x}{(1+x^2)(1+\alpha x)} fα(α,x)=(1+x2)(1+αx)x。也连续。函数与导数都连续则可以交换求导和积分的次序

所以 φ ′ ( α ) = ∫ 0 1 x ( 1 + x 2 ) ( 1 + α x ) d x \varphi'(\alpha)=\int_0^1 \frac{x}{(1+x^2)(1+\alpha x)}dx φ(α)=01(1+x2)(1+αx)xdx 看看自己算对了吗?没算对的话,想想求导的时候把谁当变量了?
等等!这就是我们之前解决的有理函数分解,将分解结果带入得 φ ′ ( α ) = 1 1 + α 2 ∫ 0 1 ( α + x 1 + x 2 − α 1 + α x ) d x \varphi'(\alpha)=\frac{1}{1+\alpha^2} \int_0^1 \left(\frac{\alpha+x}{1+x^2} - \frac{\alpha}{1+\alpha x} \right) dx φ(α)=1+α2101(1+x2α+x1+αxα)dx

问题变成了两个定积分的样子!操作是不是显而易见呢?(答案藏在了下面)

如何求解 φ ( α ) = ∫ 0 1 ln ⁡ ( 1 + α x ) 1 + x 2 d x \varphi(\alpha)=\int_0^1\frac{\ln(1+\alpha x)}{1+x^2}dx φ(α)=011+x2ln(1+αx)dx α = 1 \alpha=1 α=1的值 //华东下P190

解决了“有理函数分解”和“导数”这两个小兵之后,boss终于出现了!

我们使用的是“先求导再积分”的方法,依据莱布尼茨公式,有 φ ( α ) − φ ( 0 ) = ∫ 0 α φ ′ ( x ) d x \varphi(\alpha)-\varphi(0)=\int_0^\alpha \varphi'(x)dx φ(α)φ(0)=0αφ(x)dx
而之前算的 φ ′ ( α ) = 1 1 + α 2 [ α π 4 + ln ⁡ 2 2 − ln ⁡ ( 1 + α ) ] \varphi'(\alpha)=\frac{1}{1+\alpha^2}\left[\frac{\alpha\pi}{4}+\frac{\ln 2}{2} -\ln(1+\alpha) \right] φ(α)=1+α21[4απ+2ln2ln(1+α)],代入其中就有:

∫ 0 α φ ′ ( x ) d x = ∫ 0 α 1 1 + x 2 [ π x 4 + ln ⁡ 2 2 − ln ⁡ ( 1 + x ) ] d x \int_0^\alpha \varphi'(x)dx= \int_0^\alpha \frac{1}{1+x^2}\left[\frac{\pi x }{4}+\frac{\ln 2}{2} -\ln(1+x) \right] dx 0αφ(x)dx=0α1+x21[4πx+2ln2ln(1+x)]dx ,**先别yue,仔细看看前两项不都是很常见的定积分吗,而最后一项跟他自己长得是不是很像!

α = 1 \alpha=1 α=1,得 φ ( 1 ) − φ ( 0 ) = ∫ 0 1 φ ′ ( x ) d x = ∫ 0 1 1 1 + x 2 π x 4 d x + ∫ 0 1 1 1 + x 2 ln ⁡ 2 2 d x − ∫ 0 1 1 1 + x 2 ln ⁡ ( 1 + x ) d x = ∫ 0 1 1 1 + x 2 π x 4 d x + ∫ 0 1 1 1 + x 2 ln ⁡ 2 2 d x − φ ( 1 ) \varphi(1)-\varphi(0)=\int_0^1 \varphi'(x)dx\\= \int_0^1 \frac{1}{1+x^2} \frac{\pi x}{4} dx + \int_0^1 \frac{1}{1+x^2}\frac{\ln 2}{2}dx - \int_0^1 \frac{1}{1+x^2}\ln(1+x) dx\\ =\int_0^1 \frac{1}{1+x^2} \frac{\pi x}{4} dx + \int_0^1 \frac{1}{1+x^2}\frac{\ln 2}{2}dx - \varphi(1) φ(1)φ(0)=01φ(x)dx=011+x214πxdx+011+x212ln2dx011+x21ln(1+x)dx=011+x214πxdx+011+x212ln2dxφ(1)

φ ( 0 ) = 0 \varphi(0)=0 φ(0)=0呐,现在就做下移项和定积分就好啦

算导数 d d x ( x a + x 2 ) \frac{d}{dx}(\frac{x}{a+x^2}) dxd(a+x2x)

不会做的话建议重修中学

判断 ∫ 0 1 d x ∫ 0 1 x 2 − y 2 ( x 2 + y 2 ) 2 d y \int_0^1dx\int_0^1\frac{x^2-y^2}{(x^2+y^2)^2}dy 01dx01(x2+y2)2x2y2dy是否等于 ∫ 0 1 d y ∫ 0 1 x 2 − y 2 ( x 2 + y 2 ) 2 d x \int_0^1dy\int_0^1\frac{x^2-y^2}{(x^2+y^2)^2}dx 01dy01(x2+y2)2x2y2dx ,并解释原因 //华东下P192

计算思路:利用导数所反向蕴含的积分计算即可。

因为在积分区间并不连续

计算定积分 ∫ 0 δ d x x 2 + c 2 \int_0^\delta \frac{dx}{x^2+c^2} 0δx2+c2dx

基础定积分,提出分母中 c 2 c^2 c2的公因式即可。算得 1 c arctan ⁡ ( δ c ) \frac{1}{c} \arctan (\frac{\delta}{c}) c1arctan(cδ)

计算 lim ⁡ y → 0 ∫ 0 δ y x 2 + y 2 d x \lim\limits_{y\to0}\int_0^{\delta} \frac{y}{x^2+y^2}dx y0lim0δx2+y2ydx

提示:把分子的y提出来,就变成了(1)中定积分的形式,结果为 arctan ⁡ ( δ y ) \arctan(\frac{\delta}{y}) arctan(yδ),其绝对值小等于 π / 2 \pi/2 π/2

研究函数 F ( y ) = ∫ 0 1 y f ( x ) x 2 + y 2 d x F(y)=\int_0^1\frac{yf(x)}{x^2+y^2}dx F(y)=01x2+y2yf(x)dx的连续性,其中 f ( x ) f(x) f(x)为[0,1]上正的连续函数

只需考虑 F F F在0处的连续性,即是否有 lim ⁡ y → 0 F ( y ) = F ( 0 ) \lim\limits_{y\to0} F(y)=F(0) y0limF(y)=F(0)

对任意 δ > 0 , F ( y ) = ∫ 0 δ y f ( x ) x 2 + y 2 d x + ∫ δ 1 y f ( x ) x 2 + y 2 d x \delta>0, F(y)=\int_0^\delta \frac{yf(x)}{x^2+y^2} dx + \int_\delta^1 \frac{yf(x)}{x^2+y^2}dx δ>0,F(y)=0δx2+y2yf(x)dx+δ1x2+y2yf(x)dx,而 lim ⁡ y → 0 ∫ δ 1 y f ( x ) x 2 + y 2 d x = 0 \lim\limits_{y\to0} \int_\delta^1\frac{yf(x)}{x^2+y^2}dx=0 y0limδ1x2+y2yf(x)dx=0,故只需考虑 [ 0 , δ ] [0,\delta] [0,δ]的积分即可;

由于 f ( x ) f(x) f(x)连续,所以对任意 ϵ \epsilon ϵ,存在 δ > 0 \delta>0 δ>0使当 ∣ x − 0 ∣ < δ |x-0|<\delta x0<δ,有 ∣ f ( x ) − f ( 0 ) ∣ < ϵ |f(x)-f(0)|<\epsilon f(x)f(0)<ϵ

那么 ∣ ∫ 0 δ y ( f ( x ) − f ( 0 ) ) x 2 + y 2 d x ∣ ≤ ϵ ⋅ ∣ ∫ 0 δ y x 2 + y 2 d x ∣ ≤ ϵ ⋅ π 2 |\int_0^\delta \frac{y(f(x)-f(0))}{x^2+y^2} dx| \leq \epsilon\cdot |\int_0^{\delta} \frac{y}{x^2+y^2}dx| \leq\epsilon\cdot \frac{\pi}{2} 0δx2+y2y(f(x)f(0))dxϵ0δx2+y2ydxϵ2π

证玩啦😭😭😭

飞思卡尔智能车竞赛是一项备受关注的科技赛事,旨在激发学生的创新实践能力,尤其是在嵌入式系统、自动控制机器人技术等关键领域。其中的“电磁组”要求参赛队伍设计并搭建一辆能够自主导航的智能车,通过电磁感应线圈感知赛道路径。本压缩包文件提供了一套完整的电磁组智能车程序,这是一套经过实战验证的代码,曾在校级比赛中获得第二名的优异成绩。 该程序的核心内容可能涉及以下关键知识点: 传感器处理:文件名“4sensor”表明车辆配备了四个传感器,用于获取环境信息。这些传感器很可能是电磁感应传感器,用于探测赛道上的导电线圈。通过分析传感器信号的变化,车辆能够判断自身的行驶方向位置。 数据采集与滤波:在实际运行中,传感器读数可能受到噪声干扰,因此需要进行数据滤波以提高精度。常见的滤波算法包括低通滤波、高斯滤波滑动平均滤波等,以确保车辆对赛道的判断准确无误。 路径规划:车辆需要根据传感器输入实时规划行驶路径。这可能涉及PID(比例-积分-微分)控制、模糊逻辑控制或其他现代控制理论方法,从而确保车辆能够稳定且快速地沿赛道行驶。 电机控制:智能车的驱动通常依赖于直流电机或无刷电机,电机控制是关键环节。程序中可能包电机速度方向的调节算法,如PWM(脉宽调制)控制,以实现精准的运动控制。 嵌入式系统编程:飞思卡尔智能车的控制器可能基于飞思卡尔微处理器(例如MC9S12系列)。编程语言通常为C或C++,需要掌握微控制器的中断系统、定时器串行通信等功能。 软件架构:智能车软件通常具有清晰的架构,包括任务调度、中断服务程序主循环等。理解优化这一架构对于提升整体性能至关重要。 调试与优化:程序能够在比赛中取得好成绩,说明经过了反复的调试优化。这可能涉及代码效率提升、故障排查以及性能瓶颈的识别解决。 团队协作与版本控制:在项目开发过程中,团队协作版本控制工具(如Git)的应用不可或缺,能够保
双闭环直流电机调速系统是一种高效且应用广泛的直流调速技术。通过设置转速环电流环两个闭环,系统能够对电机的转速电流进行精准控制,从而提升动态响应能力稳定性,广泛应用于工业自动化领域。 主电路设计:主电路采用三相全控桥整流电路,将交流电转换为可调节的直流电,为电机供电。晶闸管作为核心元件,通过调节控制角α实现输出电压的调节。 元部件设计:包括整流变压器、晶闸管、电抗器等元件的设计与参数计算,这些元件的性能直接影响系统的稳定性效率。 保护电路:设计过载保护、短路保护等保护电路,确保系统安全运行。 驱动电路:设计触发电路脉冲变压器,触发电路用于触发晶闸管导通,脉冲变压器用于传递触发信号。 控制器设计:系统核心为转速调节器(ASR)电流调节器(ACR),分别对转速电流进行调控。检测电路用于采集实际转速电流值并反馈给调节器。 仿真分析:利用MATLAB/SIMULINK等工具对系统进行仿真分析,验证其稳定性性能指标是否达标。 方案确定与框图绘制:明确系统构成及各模块连接方式。 主电路设计:选择整流电路形式,设计整流变压器、晶闸管等元部件并计算参数。 驱动电路设计:设计触发电路脉冲变压器,确保晶闸管准确触发。 控制器设计: 转速调节器(ASR):根据转速指令调整实际转速。 电流调节器(ACR):根据ASR输出指令调整电流,实现快速响应。 参数计算:计算给定电压、调节器、检测电路、触发电路稳压电路的参数。 仿真分析:通过软件模拟系统运行状态,评估性能。 电气原理图绘制:完成调速控制电路的电气原理图绘制。 双闭环控制策略:转速环在外,电流环在内,形成嵌套结构,提升动态响应能力。 晶闸管控制角调节:通过改变控制角α调节输出电压,实现转速平滑调节。 仿真分析:借助专业软件验证设计的合理性有效性。 双闭环直流电机调速系统设计涉及主电路、驱动电路控制器设计等多个环节,通过仿
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值