大数据风控 - 报表监控体系

大数据风控 - 报表监控体系


在信贷反欺诈领域,报表监控也是风险管理过程中非常重要的工作内容,由于数据量大、数据维度多且涉及到多个环节,报表监控能够监控和分析客户在各个流程的状态,以便于策略人员了解资产质量、产品分布、模型效果等。以下为总结的一些可以监控的数据维度。

1. 贷前监控

贷前报表可以从业务、数据、模型等层面进行监控。

业务层面:可以监控进件量、准入策略通过量(率)[如:人行征信]、内部风控策略通过量(率)、报单量(率)、审批通过量(率)、放款量(率),放款金额、件均金额等,公司每日的运营情况一目了然,如下例:
在这里插入图片描述

数据层面:可以监测变量的缺失率、异常率、变量分布等,如果从系统层考虑也可以监测数据调用失败的情况。

模型层面:主要监测现有风控策略的情况,可以监控总体风控策略通过率、各规则命中情况、评分卡可以监控PSI。
在这里插入图片描述

可以观测每天各规则命中情况及各规则每天的命中情况,可以根据策略的运行效果以及公司政策对策略进行调整。

2. 贷中监控

以下为贷中监控常用的监控指标:
在这里插入图片描述
Vintage就是帐龄,Flow Rate滚动率,CPI账户逾期率,API金额逾期率,FSTQPD就是首逾、首二逾、首三逾、首四逾

整体情况
在这里插入图片描述
逾期情况
在这里插入图片描述

资产质量情况
在这里插入图片描述
流转率:可以用于评估催收的绩效
在这里插入图片描述
假设从M2->M3的借款人,流转率为40%,说明逾期60天以上的到逾期90天这个阶段的借款有60%都回款了,一般来说,逾期期数越高,流转率越高,回款率越低

3. 贷后监控

贷后可以监控分析逾期客户的特征和催收情况

贷后特征监控:可以后续的模型迭代优化提供数据支撑,可以从以下特征进行分析监控

  • 客户特征: 性别、年龄、婚姻状况、学历等
  • 地域特征: 省份、大区、城市等
  • 放款时段: 季节、月份、工作日、非工作日、节假日等
  • 产品特征: 产品种类、贷款期数等
  • 贷款标的物特征等(车贷、房贷可以参考)

催收情况

  • 可以区分M1、M2、M3+监控每日催回笔数和催回金额的情况
  • 可以监测催收人员拨打电话数、催收电话时长、回款数等,及时对催收策略进行调整和优化,以便提高催收效率。

参考:

  1. 金科应用研院:图文详解贷中监控报表与资产质量分析全过程
  2. 风控报表体系建设与风控指标
  • 0
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值