Observer 观察者模式

观察者模式(Observer Pattern)是一种行为设计模式,它定义了对象之间的一对多依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都会得到通知并自动更新。这种模式提供了一种对象行为型的设计,使得一个对象可以订阅另一个对象的事件,并在事件触发时收到通知。

意图

定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新。

  • 当一个对象的状态发生变化时,能够自动通知其他相关联的对象。
  • 促进松耦合的设计,让观察者和被观察者之间的通信变得简单且独立。
  • 支持广播通信,即一个主题可以有任意数量的观察者。

结构

在这里插入图片描述

观察者模式包含以下几种角色:

  • Subject(被观察者/主题):也被称为可观察对象,它保存了一个观察者列表,并提供了添加、删除以及通知观察者的接口。
  • ConcreteSubject(具体被观察者):实现了Subject接口,维护了一个具体的观察者列表,并在状态改变时通知它们。
  • Observer(观察者):为所有的具体观察者定义了一个更新接口。
  • ConcreteObserver(具体观察者):实现了Observer接口,以保持与具体主题的联系。当主题的状态改变时,具体观察者会接收到通知。

结构图

+-------------------+       +------------------+
|   Subject         |-------|  Observer (抽象)  |
+-------------------+       +------------------+
| -observers: List  |<------| + update()       |
+-------------------+       +------------------+
| + attach(Observer)|       |                  |
| + detach(Observer)|       |                  |
| + notify()        |       |                  |
+-------------------+       +------------------+
                            ^                 ^
                            |                 |
                +-----------+-----------------+
                |                             |
+---------------v-------------+       +-------v---------+
| ConcreteObserverA (具体观察者A)  |       |ConcreteObserverB  |
+----------------------------+       +---------------+
| + update()                  |       | + update()    |
+----------------------------+       +---------------+

在这个图中,Subject类维护了一个观察者列表,并且提供了添加、移除观察者的方法。当Subject的状态发生变化时,它会调用notify()方法来通知所有注册的观察者。每个观察者都实现了update()方法,这个方法会在它们接收到通知时被调用。

适用性

  • 当一个抽象模型有两个方面,其中一个方面依赖于另一个方面。将这两个方面封装在不同的对象中可以使它们各自独立地改变和复用。
  • 当对一个对象的修改需要同时改变其他对象,而不知道具体有多少对象有待改变。
  • 当一个对象应该可以在运行时通知其他对象,而不需要假定这些对象是谁。换句话说,你不想使这些对象彼此紧密耦合。

观察者模式是实现发布-订阅机制的基础,在GUI框架、消息系统、事件驱动架构等很多场景下都有广泛的应用。通过使用观察者模式,我们可以减少系统中的直接依赖,提高系统的灵活性和可扩展性。

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老攀呀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值