LeetCode 5180. 带限制的子序列和

本文介绍了解决LeetCode上受限子序列和问题的一种高效算法。通过动态规划方法,结合优先队列或双端队列,快速找到满足条件的最大子序列和。详细解析了算法的实现过程和代码细节。

https://leetcode-cn.com/problems/constrained-subset-sum/

使用动态规划,dp[i]表示以i结束的最大子序列和,每个以i位置结束的有k+1个选择,子序列只有这个元素或者从前面k个位置的某一个位置接上。

然后快速求前面k个的最大值,可以用到堆,从旧到新、从大到小队列

struct Node{
    int pos;
    int val;
};

bool operator<(const Node &a,const Node &b){
    return a.val<b.val;
}

class Solution {
public:
    int constrainedSubsetSum(vector<int>& nums, int k) {
        int n=nums.size();
        vector<int> dp(n,0);
        
        
        priority_queue<Node> q;
        for(int i=0;i<n;i++){
            dp[i]=nums[i];
            
            
            while(!q.empty() &&q.top().pos<i-k){
                q.pop();
            }
            
            if(!q.empty()){
                dp[i]=max(dp[i],nums[i]+q.top().val);
            }
            
            Node node;
            node.pos=i;
            node.val=dp[i];
            q.push(node);
            
        }
        
        int ans=nums[0];
        for(int i=0;i<n;i++){
            ans=max(ans,dp[i]);
        }
        return ans;
        
    }
};

 

struct Node{
    int pos;
    int val;
};



class Solution {
public:
    int constrainedSubsetSum(vector<int>& nums, int k) {
        int n=nums.size();
        vector<int> dp(n,0);
        
        
        deque<Node> q;
        for(int i=0;i<n;i++){
            dp[i]=nums[i];
            
            
            while(!q.empty() && q.front().pos<i-k){
                q.pop_front();
            }

            
            
            if(!q.empty()){
                dp[i]=max(dp[i],nums[i]+q.front().val);
            }

            Node node;
            node.pos=i;
            node.val=dp[i];

            while(!q.empty() && q.back().val<=node.val){
                q.pop_back();
            }
            
            q.push_back(node);
            
        }
        
        int ans=nums[0];
        for(int i=0;i<n;i++){
            ans=max(ans,dp[i]);
        }
        return ans;
        
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值